您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 机器学习:机器学习实战(Python3):kNN,决策树,贝叶斯,逻辑回归,SVM,线性回归,树回归-源码

  2. 机器学习 原创文章每月最少两篇文章,后续最新文章会在首发,视频首发,大家可以加我进交流群,技术交流或提意见都可以,欢迎星级! 文章首发声明 文章在自己的个人网站首发,其他平台文章均属转发,如想获得最新更新进展,欢迎关注我的个人网站: ://cuijiahua.com/ 第二章:kNN(k-邻域算法) 文章 个人网站 CSDN 知乎 Python3《机器学习实战》学习笔记(一):k-近邻算法(史诗级干货长文) 代码 第三章:决策树(决策树) 文章 个人网站 CSDN 知乎 Python3《机器学
  3. 所属分类:其它

  1. 《机器学习实战》kNN学习笔记(一)

  2. 概述 k-近邻算法采用测量不同特征值之间的距离方法进行分类 优缺点 优点:精度高、对异常值不敏感、唔数据输入假定 缺点:计算复杂度高、空间复杂度高。 适用数据范围:数值型和标称型 标称型:标称型目标变量的结果只在有限目标集中取值,如真与假(标称型目标变量主要用于分类)标称型:标称型目标变量的结果只在有限目标集中取值,如真与假(标称型目标变量主要用于分类) 数值型:数值型目标变量则可以从无限的数值集合中取值,如0.100,42.001等 (数值型目标变量主要用于回归分析) k-近邻算法的一般流程
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:43kb
    • 提供者:weixin_38723559