点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 一种基于光强图像深度学习的波前复原方法
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
一种基于光强图像深度学习的波前复原方法
基于深度学习的波前复原方法是利用训练好的卷积神经网络(CNN)模型并直接根据输入的光强图像得到波前像差的Zernike系数,不需要进行迭代计算,方法简单易于实现,便于快速获取相位。CNN的训练是通过对大量畸变远场光强图像和其对应的Zernike波前系数数据进行训练,自动提取光强图像特征,学习光强和Zernike系数的关系。本研究基于35阶Zernike大气湍流像差,建立了基于CNN的波前复原模型,通过分析该方法对静态波前畸变的复原能力,验证了基于CNN的波前复原方法的可行性及复原能力。
所属分类:
其它
发布日期:2021-01-26
文件大小:10mb
提供者:
weixin_38738528