点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 一种基于相似度概率的不确定分类数据聚类算法
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
改进的基于概化的概念构成聚类算法
基于概化的概念构成(Generality-based Concept Formation,GCF)是一种分类数据层次聚类算法,对GCF算法提出2点改进。首先,定义了一种新的基于条件概率分布的相似度度量,并用它替代原算法中的相似度,该度量将分类数据进行数值化处理,更精确地反映了数据间的相似程度。其次,提出相似度品质概念,给出了计算公式,相似度品质可与原算法中样本变异系数配合使用,共同确定概化水平。改进算法提高了聚类准确率,同时算法的时间复杂性保持不变。
所属分类:
其它
发布日期:2020-05-17
文件大小:184kb
提供者:
weixin_38674512
一种基于相似度概率的不确定分类数据聚类算法
针对不确定分类数据,基于Squeezer算法提出一种有效的不确定数据聚类算法:USqueezer算法。该算法先计算一个不确定分类数据与每个簇的相似度概率和,选取最大的相似度和给定的阈值相比较,若大于阈值,将不确定数据划分到该簇中,否则创建一个新簇。实验表明,USqueezer算法能够有效地进行不确定分类数据的聚类,并且占用较少的运行内存空间和运行时间。
所属分类:
其它
发布日期:2021-03-01
文件大小:240kb
提供者:
weixin_38709100