您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 一种基于AdaBoost的SVM分类器(1).pdf

  2. 一种基于AdaBoost的SVM分类器,有具体的算法步骤,可以编程实现,对于初步研究机器学习的人很有帮助哦
  3. 所属分类:其它

    • 发布日期:2010-08-20
    • 文件大小:412kb
    • 提供者:zgp_smx
  1. 数据挖掘18大算法实现以及其他相关经典DM算法

  2. 数据挖掘算法 算法目录 18大DM算法 包名 目录名 算法名 AssociationAnalysis DataMining_Apriori Apriori-关联规则挖掘算法 AssociationAnalysis DataMining_FPTree FPTree-频繁模式树算法 BaggingAndBoosting DataMining_AdaBoost AdaBoost-装袋提升算法 Classification DataMining_CART CART-分类回归树算法 Classifica
  3. 所属分类:专业指导

    • 发布日期:2016-01-05
    • 文件大小:220kb
    • 提供者:huangyueranbbc
  1. 数据挖掘18大算法实现以及其他相关经典DM算法

  2. 数据挖掘算法 算法目录 18大DM算法 包名 目录名 算法名 AssociationAnalysis DataMining_Apriori Apriori-关联规则挖掘算法 AssociationAnalysis DataMining_FPTree FPTree-频繁模式树算法 BaggingAndBoosting DataMining_AdaBoost AdaBoost-装袋提升算法 Classification DataMining_CART CART-分类回归树算法 Classifica
  3. 所属分类:Java

    • 发布日期:2017-04-08
    • 文件大小:220kb
    • 提供者:q6115759
  1. 基于半监督过采样非平衡学习的矿山微震信号识别

  2. 为准确实现冲击矿压灾害的预防预警,提出一种半监督过采样框架对煤矿微震数据进行模式识别,采用主成分分析、小波变换和Fisher判别对微震数据集样本的多个信号通道进行特征提取;并对提取到的特征数据进行半监督非平衡学习;最后训练分类器进行模式识别。通过在兖矿集团微震数据集进行试验,结果表明:针对微震数据的半监督过采样框架可以有效提高微震数据的识别准确率。与只进行过采样的方法相比,使用CPLE和SELF两种半监督学习的方法,在KNN、LR、FLD、RF、SVM和Adaboost这6个分类器上有5个分类器
  3. 所属分类:其它

  1. 疲劳驾驶检测matlab图像处理Code.zip

  2. 本基于MATLAB图像处理的疲劳驾驶检测提出了一种基于视觉信息和人工智能的驾驶员睡意自动检测模块。该系统的目的是对驾驶员的面部和眼睛进行定位、跟踪和分析,计算睡意指数,以防止事故的发生。人脸和眼睛的检测都是通过AdaBoost分类器来实现的。为了提高人脸跟踪的精度,提出了一种检测与目标跟踪相结合的方法。提出的人脸跟踪方法,还具有自校正能力。在找到眼睛区域后,利用局部二值模式(LBP)提取眼睛特征。利用这些特征,训练一个支持向量机分类器(SVM)进行眼睛状态分析。
  3. 所属分类:机器学习

    • 发布日期:2020-02-25
    • 文件大小:741kb
    • 提供者:qq_30392381
  1. 集成学习之bagging、boosting及AdaBoost的实现

  2. 前面博客分享,我们已经讲解了不少分类算法,有knn、决策树、朴素贝叶斯、逻辑回归、svm。我们知道,当坐重要决定时,大家可能都会考虑吸取多个专家而不是一个人的意见。机器学习处理问题时同样如此。集成学习(ensemblelearning)通过构建并结合多个学习器来完成学习任务,有时被称为多分类器学习系统、基于委员会的学习等。下图显示出集成学习的一般结构:先产生一组“个体学习器”,再用某种策略将它们结合起来。我们前面已经分享了五种不同的分类算法,我们可以将其用不同的分类器组合起来,这种组合结果则被称
  3. 所属分类:其它

    • 发布日期:2021-02-25
    • 文件大小:344kb
    • 提供者:weixin_38699784
  1. 集成学习之bagging、boosting及AdaBoost的实现

  2. 前面博客分享,我们已经讲解了不少分类算法,有knn、决策树、朴素贝叶斯、逻辑回归、svm。我们知道,当坐重要决定时,大家可能都会考虑吸取多个专家而不是一个人的意见。机器学习处理问题时同样如此。集成学习(ensemblelearning)通过构建并结合多个学习器来完成学习任务,有时被称为多分类器学习系统、基于委员会的学习等。下图显示出集成学习的一般结构:先产生一组“个体学习器”,再用某种策略将它们结合起来。我们前面已经分享了五种不同的分类算法,我们可以将其用不同的分类器组合起来,这种组合结果则被称
  3. 所属分类:其它

    • 发布日期:2021-02-02
    • 文件大小:344kb
    • 提供者:weixin_38589774
  1. 利用经验方差进行数据流分类

  2. 使用决策树算法进行分类是数据流中广泛研究的问题。 挑战在于何时将决策节点拆分为多个叶子。 与不考虑方差的霍夫丁定律相比,利用伯恩斯坦和贝内特不等等方差信息的浓度不平等通常是严格严格的。 许多用于流分类的机器学习算法,例如超快速决策树(VFDT)学习器,AdaBoost和支持向量机(SVM),都使用Hoeffding边界作为性能保证。 在本文中,我们提出了一种基于最近提出的经验伯恩斯坦边界的新算法,以在决策树的准确性上实现更好的概率边界。 在四个合成数据集和两个真实世界数据集上的实验结果证明了我们
  3. 所属分类:其它

    • 发布日期:2021-03-28
    • 文件大小:342kb
    • 提供者:weixin_38632797