您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 动态学习的非负矩阵分解算法

  2. 对现有增量型非负矩阵分解算法存在的一些缺陷进行改进,给出了一个基于误差判断的增量算法有效性准则.在此基础上,利用增加样本前的非负矩阵分解结果进行增量分解初始化,提出了一种新的动态非负矩阵分解算法.在多个数据集上的实验结果表明该算法可以实现对基矩阵和编码矩阵的即时更新,且具有较低的计算复杂度,在处理动态数据集时,还可有效识别噪声点,是一个有效的动态分解算法.
  3. 所属分类:其它

  1. Pre-trained-Deep-Learning-Models-For-Rapid-Analysis-Of-Piezoelectric-Hysteresis-Loops-SHO-Fitting-源码

  2. 预训练的深度学习模型,用于压电迟滞环SHO拟合的快速分析 近十年来,基于带激励压电响应力的开关光谱(BEPS)被用于表征具有纳米级分辨率的材料的铁电开关和动态机电响应。 该技术的关键输出之一是压电磁滞回线的高光谱图像,其中在每个像素位置都有一个或多个磁滞回线。 正确分析这些实验数据所需的挑战和奉献精神扼制了BEPS的影响和广泛使用。 为了简化从这些数据集中提取信息的方法,通常的方法是将压电磁滞回线拟合到经验函数,以对回线进行参数化。 该技术有几个缺点: 它占用大量计算资源,需要24小时以上才能
  3. 所属分类:其它

    • 发布日期:2021-03-31
    • 文件大小:118mb
    • 提供者:weixin_42102358