您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于分解的认知车载网络多目标频谱分配算法

  2. 为了解决认知车辆网络的吞吐量和公平性低的问题,我们建立了一个多目标频谱分配模型,以最大化认知车辆网络的平均吞吐量和公平性。 通过将杜鹃搜索算法(CS)与基于分解的多目标优化(MOEA / D)混合,将多目标问题分解为一系列权重不同的标量子问题。 通过与标准测试函数ZDT1,ZDT2和ZDT3上的交叉和变异生成新解的MOEA / D算法进行比较,验证了该算法的有效性,收敛曲线表明所提算法具有更快的收敛速度和更稳定的收敛性。表现。 我们还模拟了最大化认知车辆网络的平均吞吐量和公平性的频谱分配问题模型
  3. 所属分类:其它

    • 发布日期:2021-03-06
    • 文件大小:714kb
    • 提供者:weixin_38620267