点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 基于小波包主元分析的表面肌电信号特征识别
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
基于小波包主元分析的表面肌电信号特征识别
针对表面肌电信号(SEMG)的非平稳性及小波包变换系数维数过高的问题,提出一种小波包主元分析和线性判别分析相结合的表面肌电信号动作特征识别新方法。以表面肌电信号用于智能轮椅为例,对采集到的两路SEMG信号进行小波包主元分析,提取SEMG信号的运动特征矩阵,并将运动特征矩阵输入到线性判别分类器进行分类,实现了前臂动作识别。试验表明:该方法能够将小波包系数矩阵由16维降到4维,并且对前臂的四种动作模式(握拳、展拳、手腕内翻和手腕外翻)的平均正确识别率达98%,与传统的小波包变换相比有较高的识别率。
所属分类:
其它
发布日期:2020-07-09
文件大小:231kb
提供者:
weixin_38640168
基于WPKPCA和SVM的SEMG动作识别方法
为了有效提取表面肌电信号SEMG(Surface Electromyographic)的特征,更好的识别人体上肢运动模式,提出了一种小波包核主元分析(WPKPCA)和支持向量机(SVM)相结合的新方法。通过虚拟仪器采集桡侧腕屈肌和肱桡肌两路表面肌电信号,应用小波包核主元分析法对表面肌电信号进行特征提取,采用支持向量机对表面肌电信号特征数据进行分类识别。实验结果表明,采用此方法能够从表面肌电信号中识别出握拳、展拳、手腕内翻和手腕外翻4种动作,更能有效提取表面肌电信号信息,动作识别率高达98%。
所属分类:
其它
发布日期:2020-10-16
文件大小:568kb
提供者:
weixin_38734492