时变神经网络结构可简单地取为常规神经网络连接形式,但连接权却是时变的.如何确定时变权是应用时变神经网络时的难题.迭代学习方法是一种合理的选择,它不同于将时变连接权展成Taylor级数,通过训练多项式系数的处理方法.而且,后者的处理方式不可避免地存在截断误差.对于有限区间连续时变非线性系统的神经网络建模与辨识,借助于重复运行过程,以迭代学习算法调整权值,进行网络训练.不计逼近误差,提出的学习算法能够使得辨识误差在整个区间上渐近收敛于零.为处理非零但有界的逼近误差,采用带死区的迭代学习算法.逼近误差