您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于混合神经网络的光伏组件输出特性数据驱动建模方法

  2. 针对传统物理机理建模方法不适用于复杂光照条件下光伏组件建模的问题,提出一种基于混合结构神经网络的光伏组件输出特性数据驱动建模方法。在深入分析光伏组件物理机理及输出特性的基础上,提出利用卷积神经网络和径向基函数神经网络对不均匀光照条件、温度、湿度等环境因素进行特征提取,并对光伏组件的输出特性进行仿真拟合。为提高模型的拟合效果,提出针对不均匀光照条件的阴影形态等效分析方法,同时采用改进型的遗传编码方案对网络参数进行优化,最后利用实际运行数据对模型效果进行分析验证。结果表明,该模型对不均匀光照条件具有
  3. 所属分类:其它