您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于特征融合的K-means微博话题发现模型

  2. 针对传统话题检测方法在微博短文本上存在高维稀疏的缺陷,提出了一种基于特征融合的K-means微博话题发现模型。为了更好地表达微博话题的语义信息,使用在句子中共现的词对向量模型(Biterm_VSM)代替传统的向量空间模型(Vector Space Model,VSM),并结合主题模型(Latent Dirichlet Allocation,LDA)挖掘出微博短文本中的潜在语义,把两个模型得到的特征进行特征融合,并应用K-means聚类算法进行话题的发现。实验结果表明,与传统的话题检测方法相比,该
  3. 所属分类:其它

    • 发布日期:2020-10-15
    • 文件大小:490kb
    • 提供者:weixin_38673798