您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于AdaBoost RBF神经网络的火灾烟雾检测

  2. 为了解决大空间场所的火灾早期预警问题,减少环境变化对预报的影响,从烟雾的视觉特征角度探讨了视频火灾烟雾检测方法.该算法首先采用背景减除法获得差分图像,接着对差分图像进行二值化,并结合数学形态学提取可疑区域,然后从可疑区域提取颜色特征、运动特征和形状特征,最后使用基于AdaBoost的RBF神经网络进行识别,判断场景中是否有烟雾出现.试验表明,该方法能有效地检测出烟雾并且具有较好的抗干扰能力,提高了烟雾检测的准确率,具有较好的工程应用价值.
  3. 所属分类:其它

    • 发布日期:2020-06-03
    • 文件大小:921kb
    • 提供者:weixin_38575536
  1. 基于目标区域的卷积神经网络火灾烟雾识别

  2. 在场景复杂、干扰较多的情况下,传统的火灾烟雾识别方法的识别性能不高。针对该问题,提出了一种基于目标区域的卷积神经网络火灾烟雾识别方法,构建两层的火灾烟雾识别模型,利用目标区域定位层的运动检测算法对火灾烟雾图像进行烟雾目标区域的提取,快速去除复杂场景的大量无关干扰信息,并将提取的烟雾目标区域输入火灾烟雾识别层,通过卷积神经网络精细提取烟雾的深层特征后进行分类,完成火灾烟雾的识别。实验结果表明,所提方法在复杂环境下的数据集中,抗干扰能力较强,能够有效降低误检率,提高烟雾识别的准确率。
  3. 所属分类:其它

  1. 基于神经网络的火灾烟雾识别方法

  2. 提出了一种基于神经网络的火灾烟雾识别方法,以波长为670 nm、1060 nm、1550 nm的三束激光的三对消光系数比作为网络的输入,网络的输出为“火灾烟雾”和“非火灾因素”,从典型火灾烟雾和非火灾因素对多波长激光的衰减实验中选取数据,组成26种网络样本模式定义表,经391次仿真训练后,输出误差小于0.0001,并经验证实验表明,本方法对火灾烟雾和非火灾因素能进行有效的识别,是处理烟雾识别等非结构问题的一种行之有效的方法。
  3. 所属分类:其它