点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 基于粒子群算法的多目标函数优化问题研究
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
基于粒子群算法的多目标函数优化问题研究
基于粒子群算法的多目标函数优化问题研究论文一篇
所属分类:
C/C++
发布日期:2012-01-13
文件大小:1mb
提供者:
lmy8509
粒子群优化算法源码下载
求解最优化问题一直是遗传算法的经典应用领域,但是对于不同的最优化问题,遗传算法往往要重新设计“交叉”、“变异”算子,甚至要开发新的进化操作;另外遗传算法不容易理解、操作复杂、大多数情况下效率比较低。所以,寻求新的解决最优问题的算法一直是研究热点。对约束优化问题的求解,已有许多算法被提出。传统的方法有梯度映射法、梯度下降法、惩罚函数法、障碍函数法等,但是单纯使用这些方法不是效率很低就是适用范围有限。而进化计算由于其求解过程不依赖于目标函数的解析性质,同时又能以较大的概率收敛于全局最优解,所以用进
所属分类:
其它
发布日期:2012-12-30
文件大小:86byte
提供者:
checkpaper
一种新的交叉粒子群算法及其应用
粒子群算法是基于群集智能、受到人工生命研究结果的启发而提出的一种现 代优化方法。作为一类随机全局优化技术,与传统优化方法相比较,对目标函数 的解析性质要求不高,所以常用于解决一些复杂的、大规模的、非线性、不可微 的优化问题,近年来受到学术界的广泛重视。 本文介绍了标准粒子群算法和几种改进粒子群算法,在利用标准粒子群算法 优点的同时,进行了一些改进,例如:在位置更新方程中设置动力参数以限制粒 子在搜索区域内、采用减弱速度更新的策略减少速度更新的次数等。在此基础上 提出一种新的交叉粒子群算法,该算
所属分类:
其它
发布日期:2009-04-07
文件大小:2mb
提供者:
u012803624
粒子群优化算法的改进与应用
粒子群优化算法是在对鸟群捕食行为模拟的基础上提出的一种群 集智能算法,是进化计算领域中一个新的分支。它的主要特点是原理简 单、参数少、收敛速度较快、易于实现。因此,该算法一提出就吸引了 的广泛关注,逐渐成为一个新的研究热点。目前,粒子群优化算法应用 于神经网络的训练、函数优化、多目标优化等领域并取得了较好的效果, 有着广阔的应用前景。 论文的主要工作有 对粒子群优化算法的理论基础和研究现状作了简要的介绍,分 析了粒子群优化算法的原理及算法流程,对算法参数的选择做了详细的 研究,并进行了相应的仿
所属分类:
其它
发布日期:2009-04-07
文件大小:4mb
提供者:
chinhape
MATLAB-智能算法30个案例分析-终极版(带目录).doc
1 基于遗传算法的TSP算法(王辉) 2 基于遗传算法和非线性规划的函数寻优算法(史峰) 3 基于遗传算法的BP神经网络优化算法(王辉) 4 设菲尔德大学的MATLAB遗传算法工具箱(王辉) 5 基于遗传算法的LQR控制优化算法(胡斐) 6 遗传算法工具箱详解及应用(胡斐) 7 多种群遗传算法的函数优化算法(王辉) 8 基于量子遗传算法的函数寻优算法(王辉) 9 多目标Pareto最优解搜索算法(胡斐) 10 基于多目标Pareto的二维背包搜索算法(史峰) 11 基于免疫算法的柔性车间调度算
所属分类:
机器学习
发布日期:2019-09-12
文件大小:1mb
提供者:
weixin_42544693
基于局部搜索与混合多样性策略的多目标粒子群算法
为了提高算法的收敛性与非支配解集的多样性, 提出一种基于局部搜索与混合多样性策略的多目标粒子群 算法(LH-MOPSO). 该算法使用增广Lagrange 乘子法对非支配解进行局部搜索以快速接近Pareto 最优解; 利用基于 改进的Maximin 适应值函数与拥挤距离的混合多样性策略对非支配解集进行维护以保留解的多样性, 同时引入高斯 变异算子以避免算法早熟收敛; 最后针对多目标约束优化问题, 给出一种有效的约束处理方法. 实验研究表明该算法 具有良好的优化性能.
所属分类:
其它
发布日期:2021-01-14
文件大小:382kb
提供者:
weixin_38733676