您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. VC++数字图像模式识别技术及工程实践

  2. 目录 第1章 绪论 1.1 模式和模式识别的概念 1.2 模式空间、特征空间和类型空间 1.3 模式识别系统的构成 1.3.1 信息获取 1.3.2 预处理 1.3.3 特征提取和选择 1.3.4 分类决策 1.4 物体的结构表示 1.5 图片识别问题 第2章 模式识别中的基本决策方法 2.1 基于最小错误率的贝叶斯决策 2.2 分类器设计 2.2.1 多类情况 2.2.2 两类情况 2.3 关于分类器的错误率 2.4 关于贝叶斯决策 2.5 线性判别函数的基本概念 2.6 设计线性分类器的主
  3. 所属分类:C++

    • 发布日期:2013-05-16
    • 文件大小:14mb
    • 提供者:a121649982
  1. Visual C++数字图像模式识别技术及工程实践工程源代码

  2. 第1章 绪论 1.1 模式和模式识别的概念 1.2 模式空间、特征空间和类型空间 1.3 模式识别系统的构成 1.3.1 信息获取 1.3.2 预处理 1.3.3 特征提取和选择 1.3.4 分类决策 1.4 物体的结构表示 1.5 图片识别问题 第2章 模式识别中的基本决策方法 2.1 基于最小错误率的贝叶斯决策 2.2 分类器设计 2.2.1 多类情况 2.2.2 两类情况 2.3 关于分类器的错误率 2.4 关于贝叶斯决策 2.5 线性判别函数的基本概念 2.6 设计线性分类器的主要步骤
  3. 所属分类:C++

    • 发布日期:2013-05-17
    • 文件大小:14mb
    • 提供者:a121649982
  1. 基于网络聚类选择的神经网络集成方法及应用

  2. 摘要:面向农作物精准施肥量确定问题,提出一种基于复杂网络聚类选择的神经网络集成方法。在该方法中,首先采用回放取样方法来生成多个神经网络个体,其次利用网络聚类算法FEC从这些神经网络个体集中选出部分个体,再次对选出的神经网络个体分别用线性加权方法和非线性方法进行集成,最后对两个集成结果进行融合得到预测结果。于2008年在吉林省榆树玉米试验田七号地对该方法进行了应用。实验结果表明:该方法不仅优于传统的施肥模型、神经网络线性加权集成和神经网络非线性集成方法,而且还具有较强的泛化能力。
  3. 所属分类:其它

    • 发布日期:2021-02-23
    • 文件大小:703kb
    • 提供者:weixin_38570278