void LET(double **CoefficientMatrix, double *ConstantMatrix, int m, /*系数矩阵为m行n列*/ int n, /*常数矩阵为1行n列*/ double *Result) 参数说明:第一个参数所指向的二维空间存放了系数矩阵,m行n列,每一列为一组观测值。比如第一列是第一组观测值,x1、x2、x3、x4……xm。每一行是相同量的不同组观测值,如第一行,x1、x11、……x1n 第二个参数是n组观测值的常数值 第三个参数为系数矩阵的
最小二乘法是先将方程自变量与因变量化为系数矩阵X,再求该矩阵的转置矩阵(X1),接着求矩阵X与他的转置矩阵的X1的乘积(X2),然后求X2的逆矩阵。最后整合为系数矩阵W,求解后分别对应截距b、a1、和a2。可见计算一个矩阵的逆是相当耗费时间且复杂的,而且求逆也会存在数值不稳定的情况。
梯度下降法迭代的次数可能会比较多,但是相对来说计算量并不是很大。且其有收敛性保证。故在大数据量的时候,使用梯度下降法比较好。
梯度下降法
import numpy as np
from matplotlib imp
最小二乘法是先将方程自变量与因变量化为系数矩阵X,再求该矩阵的转置矩阵(X1),接着求矩阵X与他的转置矩阵的X1的乘积(X2),然后求X2的逆矩阵。最后整合为系数矩阵W,求解后分别对应截距b、a1、和a2。可见计算一个矩阵的逆是相当耗费时间且复杂的,而且求逆也会存在数值不稳定的情况。
梯度下降法迭代的次数可能会比较多,但是相对来说计算量并不是很大。且其有收敛性保证。故在大数据量的时候,使用梯度下降法比较好。
梯度下降法
import numpy as np
from matplotlib imp
最小二乘法是先将方程自变量与因变量化为系数矩阵X,再求该矩阵的转置矩阵(X1),接着求矩阵X与他的转置矩阵的X1的乘积(X2),然后求X2的逆矩阵。最后整合为系数矩阵W,求解后分别对应截距b、a1、和a2。可见计算一个矩阵的逆是相当耗费时间且复杂的,而且求逆也会存在数值不稳定的情况。
梯度下降法迭代的次数可能会比较多,但是相对来说计算量并不是很大。且其有收敛性保证。故在大数据量的时候,使用梯度下降法比较好。
梯度下降法
import numpy as np
from matplotlib imp