您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 开关电源EMI抑制方法

  2. 如何降低甚至消除开关电源的EMI问题已经成为全球开关电源设计师以及电磁兼容(EMC)设计师非常关注的问题
  3. 所属分类:电信

    • 发布日期:2011-05-22
    • 文件大小:63kb
    • 提供者:zy187239484
  1. 如何降低手机中D类放大器的EMI影响.pdf

  2. 如何降低手机中D类放大器的EMI影响
  3. 所属分类:其它

    • 发布日期:2019-09-05
    • 文件大小:374kb
    • 提供者:weixin_38744153
  1. 专家7点建议:如何避免PCB电磁问题?

  2. 电磁兼容性(EMC)及关联的电磁干扰(EMI)历来都需要系统设计工程师擦亮眼睛,在当今电路板设计和元器件封装不断缩小、OEM要求更高速系统的情况下,这两大问题尤其令PCB布局和设计工程师头痛。EMC与电磁能的产生、传播和接收密切相关,PCB设计中不希望出现EMC。电磁能来自多个源头,它们混合在一起,因此必须特别小心,确保不同的电路、走线、过孔和PCB材料协同工作时,各种信号兼容且不会相互干扰。另一方面,EMI是由EMC或不想要的电磁能产生的一种破坏性影响。在这种电磁环境下,PCB设计人员必须确保
  3. 所属分类:其它

    • 发布日期:2020-07-13
    • 文件大小:85kb
    • 提供者:weixin_38551187
  1. 使用PCB孔来减少EMI

  2. PCB中的安装孔是电子设计中的重要元素。每个PCB设计师都会去了解PCB安装孔的用途以及基本设计。并且,当安装孔与地面连接时,可以节省安装后的一些不必要的麻烦。如何使用PCB孔来减少EMI? 顾名思义,PCB安装孔有助于将PCB固定到外壳上。不过这是它的物理机械用途,此外,在电磁功能方面,PCB安装孔还可用于降低电磁干扰(EMI)。对EMI敏感的PCB通常放置在金属外壳中。为了有效降低EMI,电镀PCB安装孔需要连接到地面。这样接地屏蔽之后,任何电磁干扰将从金属外壳被导向到地面。 一般的新手
  3. 所属分类:其它

    • 发布日期:2020-07-13
    • 文件大小:68kb
    • 提供者:weixin_38677255
  1. 如何降低MOSFET损耗并提升EMI性能

  2. 本文主要阐述了MOSFET在模块电源中的应用,分析了MOSFET损耗特点,提出了优化方法;并且阐述了优化方法与EMI之间的关系。
  3. 所属分类:其它

    • 发布日期:2020-07-21
    • 文件大小:75kb
    • 提供者:weixin_38502814
  1. 电源设计过程中的EMI抑制要素讲解

  2. EMI电磁干扰一直是一个让设计者们困惑不已的问题。大部分电路设计终究都会需要考虑电磁干扰的问题,而电磁干扰是否合格将关系到产品能够最终上市。因此设计者们都希望在设计制造过程中就能最大程度上的降低EMI,本文就将对如何通过抑制EMI来降低电源的干扰来进行讲解。
  3. 所属分类:其它

    • 发布日期:2020-07-20
    • 文件大小:52kb
    • 提供者:weixin_38675506
  1. 手机D类放大器怎么设计降低EMI

  2. 由于在效率上相对于AB类放大器的巨大优势,D类放大器的应用越来越广泛。根据市场调研机构 Gartner的报告,D类放大器在2006年至2011年之间的复合年成长率将达15.6%,从3.34亿美元成长至6.88亿美元,主要的成长动力来自于功耗敏感及空间受限的消费类电子产品。但D类放大器开关输出的拓扑结构带来了高频的EMI,如何控制好D类放大器的EMI,是系统工程师必须要考虑的方面。
  3. 所属分类:其它

    • 发布日期:2020-07-19
    • 文件大小:58kb
    • 提供者:weixin_38619967
  1. 如何降低手机中D类放大器的EMI影响

  2. 由于在效率上相对于AB类放大器的巨大优势,D类放大器的应用越来越广泛。根据市场调研机构 Gartner的报告,D类放大器在2006年至2011年之间的复合年成长率将达15.6%,从3.34亿美元成长至6.88亿美元,主要的成长动力来自于功耗敏感及空间受限的消费类电子产品。但D类放大器开关输出的拓扑结构带来了高频的EMI,如何控制好D类放大器的EMI,是系统工程师必须要考虑的方面。
  3. 所属分类:其它

    • 发布日期:2020-07-19
    • 文件大小:84kb
    • 提供者:weixin_38545117
  1. 如何降低汽车电源PCB布线时的电磁辐射

  2. 好的汽车电源PCB布线可以在使用高频开关稳压器时,提供更干净的输出,并且简化EMI测试中的调试工作。针对开关稳压器外围元件的合理布局,有助于从源头降低噪声和电磁辐射,有助于节约项目评估阶段的宝贵时间,简化设计。
  3. 所属分类:其它

    • 发布日期:2020-07-28
    • 文件大小:43kb
    • 提供者:weixin_38556985
  1. 基础电子中的如何选择正确的定时器件

  2. 本文描述了定时器件的基本要求,并列出了适合不同应用的振荡器类别。表1比较了硅MEMS和石英振荡器的性能,其中考虑到了上一部分讨论的许多参数。在这一部分,我们将更加详细地讨论高性能振荡器需要考虑的几个重要因素:温度响应、频率控制以及降低EMI要求。另外还会讨论电路板设计、产品交货时间和成本等实用性因素。了解更多关于石英振荡器的详细参数请点击此处:http://www.dzsc.com/product/infomation/234729/2012613152322333.html 表1:硅ME
  3. 所属分类:其它

    • 发布日期:2020-10-20
    • 文件大小:206kb
    • 提供者:weixin_38590685
  1. 元器件应用中的如何降低MOSFET损耗并提升EMI性能

  2. 摘要: 本文主要阐述了MOSFET在模块电源中的应用,分析了MOSFET损耗特点,提出了优化方法;并且阐述了优化方法与EMI之间的关系。 关键词:MOSFET  损耗分析   EMI  金升阳R3 一、引言 MOSFET作为主要的开关功率器件之一,被大量应用于模块电源。了解MOSFET的损耗组成并对其分析,有利于优化MOSFET损耗,提高模块电源的功率;但是一味的减少MOSFET的损耗及其他方面的损耗,反而会引起
  3. 所属分类:其它

    • 发布日期:2020-10-19
    • 文件大小:71kb
    • 提供者:weixin_38626242
  1. 模拟技术中的如何降低D类音频应用中的电磁干扰

  2. 随着便携式电池供电设备的工作时间越来越长,D类放大器凭借先天的效率优势,受到重视的程度与日俱增。如今,大部分D类系统的工作效率都在80%以上,以往开发人员必须牺牲音频性能和增加电路板的空间和系统成本,才能提高效率。所幸,最新的D类技术已克服了这些架构的缺点,同时简化了系统设计,降低了解决方案的成本。   对于D类放大器来说,常见的问题包括:滤波器的大小、电磁干扰(EMI)、射频干扰(RFI)和不良的总谐波失真+噪声(THD+N)。新架构采用扬声器本身的电感特性,从PWM方波输出中抽取音频成份,
  3. 所属分类:其它

    • 发布日期:2020-11-12
    • 文件大小:204kb
    • 提供者:weixin_38735790
  1. 模拟技术中的如何降低手机中D类放大器的EMI影响

  2. 由于在效率上相对于AB类放大器的巨大优势,D类放大器的应用越来越广泛。根据市场调研机构 Gartner的报告,D类放大器在2006年至2011年之间的复合年成长率将达15.6%,从3.34亿美元成长至6.88亿美元,主要的成长动力来自于功耗敏感及空间受限的消费类电子产品。但D类放大器开关输出的拓扑结构带来了高频的EMI,如何控制好D类放大器的EMI,是系统工程师必须要考虑的方面。   D类放大器中EMI的产生   变化的电压和电流信号会产生电磁场辐射,形成电磁波干扰(EMI:Electro-
  3. 所属分类:其它

    • 发布日期:2020-11-08
    • 文件大小:289kb
    • 提供者:weixin_38562026
  1. 滤波器在抗EMI中的应用及发展

  2. 随着科学技术的不断进步和人类生活水平的逐步提高,家电设备、移动式和个人携带式电子设备日益增多,于是各电子设备间的相互影响和干扰问题变得日趋严重和复杂化。IBM公司对计算机电源故障进行分析后认为,近90%的故障源于电磁干扰(EMI);我国有关部门1994年对147家企业生产的不同型号汽车进行无线电干扰性能摸底检测,达标合格汽车仅占1/4。电磁干扰还威胁着人类的健康和安全,海德堡大学的生物学家研究发现,甚至连微弱的电磁辐射也会通过眼睛侵入大脑,给人们播下癌的种子,因此呼吁人们要警惕“带电磁的烟雾”。
  3. 所属分类:其它

    • 发布日期:2021-02-03
    • 文件大小:100kb
    • 提供者:weixin_38543950
  1. 如何选择正确的定时器件

  2. 本文描述了定时器件的基本要求,并列出了适合不同应用的振荡器类别。表1比较了硅MEMS和石英振荡器的性能,其中考虑到了上一部分讨论的许多参数。在这一部分,我们将更加详细地讨论高性能振荡器需要考虑的几个重要因素:温度响应、频率控制以及降低EMI要求。另外还会讨论电路板设计、产品交货时间和成本等实用性因素。了解更多关于石英振荡器的详细参数请点击此处:https://www.dzsc.com/product/infomation/234729/2012613152322333.html 表1:硅M
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:193kb
    • 提供者:weixin_38722052
  1. 如何降低手机中D类放大器的EMI影响

  2. 由于在效率上相对于AB类放大器的巨大优势,D类放大器的应用越来越广泛。根据市场调研机构 Gartner的,D类放大器在2006年至2011年之间的复合年成长率将达15.6%,从3.34亿美元成长至6.88亿美元,主要的成长动力来自于功耗敏感及空间受限的消费类电子产品。但D类放大器开关输出的拓扑结构带来了高频的EMI,如何控制好D类放大器的EMI,是系统工程师必须要考虑的方面。   D类放大器中EMI的产生   变化的电压和电流信号会产生电磁场辐射,形成电磁波干扰(EMI:Electro-Ma
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:396kb
    • 提供者:weixin_38649315
  1. 在数字电路PCB设计中该如何进行EMI控制?

  2. 随着IC器件集成度的提高、设备的逐步小型化和器件的速度愈来愈高,电子产品中的EMI问题也更加严重。从系统设备EMC/EMI设计的观点来看,在设备的PCB设计阶段处理好EMC/EMI问题,是使系统设备达到电磁兼容标准有效、成本的手段。本文介绍数字电路PCB设计中的EMI控制技术。 一、EMI的产生及抑制原理 EMI的产生是由于电磁干扰源通过耦合路径将能量传递给敏感系统造成的。它包括经由导线或公共地线的传导、通过空间辐射或通过近场耦合三种基本形式。EMI的危害表现
  3. 所属分类:其它

    • 发布日期:2021-01-19
    • 文件大小:97kb
    • 提供者:weixin_38731027
  1. 使用PCB孔来减少EMI的教程

  2. PCB中的安装孔是电子设计中的重要元素。每个PCB设计师都会去了解PCB安装孔的用途以及基本设计。并且,当安装孔与地面连接时,可以节省安装后的一些不必要的麻烦。 如何使用PCB孔来减少EMI?      顾名思义,PCB安装孔有助于将PCB固定到外壳上。不过这是它的物理机械用途,此外,在电磁功能方面,PCB安装孔还可用于降低电磁干扰(EMI)。对EMI敏感的PCB通常放置在金属外壳中。为了有效降低EMI,电镀PCB安装孔需要连接到地面。这样接地屏蔽之后,任何电磁干扰将从金属外壳被导向到地面。
  3. 所属分类:其它

    • 发布日期:2021-01-19
    • 文件大小:68kb
    • 提供者:weixin_38638002
  1. 关于EMI的简单介绍,如何降低EMI

  2. 随着技术的发展,数字信号的时钟频率越来越高,电路系统对于信号的建立、保持时间、时钟抖动等要素提出越来越高的要求。EMI,即电磁干扰,是指电路系统通过传导或者辐射的方式,对于周边电路系统产生的影响。EMI会引起电路性能的降低,严重的话,可能导致整个系统失效。在实际操作中,相关机构颁布电磁兼容的规范,确保上市的电子产品满足规范要求。  时钟信号常常是电路系统中频率和边沿陡的信号,多数EMI问题的产生和时钟信号有关。  降低EMI的方法有许多种,包括屏蔽、滤波、隔离、铁氧体磁环、信号边沿控制以及在PC
  3. 所属分类:其它

    • 发布日期:2021-01-19
    • 文件大小:85kb
    • 提供者:weixin_38693506
  1. 浅谈开关电源中EMI来源 电源模块如何降低EMI

  2. 越来越多的应用必须通过EMI标准,制造商才获得商业转售批准。开关电源意味着器件内部有电子开关,EMI可通过它产生辐射。   本文将介绍开关电源中EMI的以及降低EMI的方法或技术。本文还将向您展示电源模块(控制器、高侧和低侧FET及电感器封装为一体)如何帮助降低EMI。   开关电源中EMI的   首先,必须尊重物理定律。根据麦克斯韦方程组,交流电可产生电磁场。每个电导体中均会出现这种现象,其自身带有一些可以形成振荡电路的电容和电感。该振荡电路以特定频率(f=1/(2*π*sqrt(LC)
  3. 所属分类:其它

    • 发布日期:2021-01-12
    • 文件大小:728kb
    • 提供者:weixin_38609732
« 12 3 4 5 »