您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于脆性模量系数的岩石应变软化及渗透率演化模型

  2. 岩石峰后应变软化力学行为及渗透率演化规律是岩石工程稳定性和安全性分析的基础。在三轴实验基础上分析了围压对岩石峰后应变软化力学行为的影响规律,提出了描述围压对岩石峰后脆性影响的新参数,即脆性模量和脆性模量系数,分析了脆性模量的物理意义和脆性模量系数方法的应用范围。基于脆性模量系数,结合强度退化指数、扩容指数、FLAC中的SS模型和体积应变增透率,建立了考虑围压影响的岩石应变软化模型和渗透率演化模型。利用本文模型较好地模拟再现了不同围压下Gebdykes白云岩变形和巴里坤砂岩渗透率的演化过程,验证了
  3. 所属分类:其它

  1. 承载围岩渗透率演化模型及数值分析

  2. 为反映承载围岩变形破坏过程中渗透率的变化,将岩石变形破坏过程视作弹-脆-塑过程,分析了岩石全程应力-应变-渗透率关系,建立岩石渗透率演化数学模型。模型中岩石单元的渗透率演化包括如下阶段:①岩石单元破坏前,渗透率为孔隙率的函数;②若岩石单元发生剪切破坏,假设岩石单元剪胀扩容在单元体内引起两条斜交裂隙;③若岩石单元发生拉破坏,体积膨胀在单元体内引起两条正交的裂隙。基于平行板的渗透率立方体定律计算破坏岩石单元的渗透率,进而建立了承载岩石弹性变形、脆性破坏全过程的岩石渗透率演化模型。在FLAC软件下利用
  3. 所属分类:其它

  1. 低渗煤样全应力应变过程渗透特性试验

  2. 采用MTS815.02型岩石伺服试验系统对煤样进行了应力应变全过程渗透性试验,得到不同围压下煤样的全应力-应变曲线,探讨了全应力-应变过程中煤样渗透率-应变关系曲线的几何特性,研究了煤样变形和破坏过程中的轴向应变与渗透率之间的关系,分析围压对煤样渗透率变化的影响。结果表明,轴向应力对Darcy流渗透特性和非Darcy流渗透特性的影响是同步的,煤样渗透率的峰值滞后于应力应变峰值;随着围压增大,煤样的渗透率总体上呈下降趋势。
  3. 所属分类:其它

    • 发布日期:2020-04-24
    • 文件大小:375kb
    • 提供者:weixin_38526823
  1. 深部含瓦斯煤体渗透率演化及卸荷增透理论模型

  2. 利用渗透率理论模型对深部煤层渗透率的变化进行了探讨,认为深部煤层地应力主导有效应力的变化,直接或间接的控制着渗透率。要有效增加煤层的渗透率,只能降低地应力。据此开展了煤体卸荷渗透率试验研究,获得煤体卸荷过程中既存在原始裂隙的扩展,也有新生裂隙的产生,两者的综合作用是导致卸荷煤体渗透率骤增的原因。在实验和理论分析的基础上提出了煤体卸荷渗透率演化概念模型,建立了考虑有效应力和瓦斯吸附/解吸变形等因素的、以应变为变量的煤体卸荷损伤增透理论模型。该模型搭建了煤体卸荷与增透的桥梁,可采用岩石力学软件获得的
  3. 所属分类:其它

  1. 不同加卸载路径下煤岩渗透性变化特征分析

  2. 查明不同加卸载路径下煤岩渗透率变化特征是进行采、掘过程中煤岩裂隙变化规律研究的基础。利用RMT-150B型岩石力学伺服实验系统对不同煤样进行了不同应力、不同变形阶段的多次加-卸载下的渗透性测试试验,基于孔裂缝的演化机理对渗透性变化规律进行总结,并对变化机理进行了分析。结果表明:峰值前进行加卸载时,渗透性变化幅度较小;应变-渗透性曲线较应力-应变曲线滞后性不明显。其变化主要取决于弹性变形;峰值后进行加卸载时,渗透性发生质的变化,增加幅度较大,并且应变-渗透性曲线较应力-应变曲线滞后性明显,其变化主
  3. 所属分类:其它

    • 发布日期:2020-07-16
    • 文件大小:719kb
    • 提供者:weixin_38601390
  1. 岩石应力-应变过程中渗透率变化分析

  2. 岩石空隙率与空隙的几何性质是影响其渗透率的关键因素。通过分析渗透率-应变曲线与岩石破坏过程的对应关系,指出岩石的渗透率与岩石的体应变密切相关。在压密区间内,岩石的渗透率呈现为负指数下降;峰前膨胀区间内,渗透率快速增加,并在末期形成贯通性的渗透通道;在峰后阶段由于部分通道被堵塞,渗透率发生下降。同时,将断裂力学推广到考虑岩石介质的微观破坏不均匀性,指出岩石渗透率的变化主要是由尺度等级较小的微破裂的相互作用和生长引起的主干断裂,进而形成贯通性的渗透通道。
  3. 所属分类:其它

    • 发布日期:2020-07-13
    • 文件大小:677kb
    • 提供者:weixin_38628647