您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. MachineLearning-master-python.zip

  2. 属于网络下载资源,感谢原作者的贡献。 ##目录介绍 - **DeepLearning Tutorials** 这个文件夹下包含一些深度学习算法的实现代码,以及具体的应用实例,包含: Keras使用进阶。介绍了怎么保存训练好的CNN模型,怎么将CNN用作特征提取,怎么可视化卷积图。 [keras_usage]介绍了一个简单易用的深度学习框架keras,用经典的Mnist分类问题对该框架的使用进行说明,训练一个CNN,总共不超过30行代码。 将卷积神经网络CNN应用于人脸识别的一个demo,人脸数
  3. 所属分类:专业指导

    • 发布日期:2016-07-04
    • 文件大小:1mb
    • 提供者:qq_33042687
  1. 统计学习方法_李航

  2. 统计学习是计算机及其应用领域的一门重要的学科。本书全面系统地介绍了统计学习的主要方法,特别是监督学习方法,包括感知机、k近邻法、朴素贝叶斯法、决策树、逻辑斯谛回归与最大熵模型、支持向量机、提升方法、em算法、隐马尔可夫模型和条件随机场等。除第1章概论和最后一章总结外,每章介绍一种方法。叙述从具体问题或实例入手,由浅入深,阐明思路,给出必要的数学推导,便于读者掌握统计学习方法的实质,学会运用。为满足读者进一步学习的需要,书中还介绍了一些相关研究,给出了少量习题,列出了主要参考文献。 《统计学习方法
  3. 所属分类:机器学习

  1. Android代码-Java 实现的自然语言处理中文分词

  2. HanLP: Han Language Processing 汉语言处理包 HanLP是一系列模型与算法组成的NLP工具包,由大快搜索主导并完全开源,目标是普及自然语言处理在生产环境中的应用。HanLP具备功能完善、性能高效、架构清晰、语料时新、可自定义的特点。 HanLP提供下列功能: 中文分词 HMM-Bigram(速度与精度最佳平衡;一百兆内存) 最短路分词、N-最短路分词 由字构词(侧重精度,全世界最大语料库,可识别新词;适合NLP任务) 感知机分词、CRF分词 词典分词(侧重速度,每
  3. 所属分类:其它

    • 发布日期:2019-08-06
    • 文件大小:21mb
    • 提供者:weixin_39840924
  1. 感知机模型的训练

  2. BAT算法工程师深入详细地讲解感知机模型的训练,带你轻松入门深度学习!
  3. 所属分类:深度学习

    • 发布日期:2019-07-04
    • 文件大小:29mb
    • 提供者:weixin_45246409
  1. 统计自然语言处理

  2. 统计自然语言处理是一本很好的书籍,是一本很基础的书籍目录 序二 第2版前宣 第1版前言 第1章绪论 11基本概念 1.1.1语言学与语音学 2自然语言处理 11.3关于“理解”的标准 1,2自然语言处理研究的内容和面临的困难 1,2,1自然语言处理研宄的内容 1,22自然语言处理涉及的几个层次 1.2.3自然语言处理面临的困难 13自然语言处理的基本方法及其发展 13,1自然语言处理的基本方汏 3,2自然语言处理的发展 14自然语言处理的研究现状 本书的内容安挂 第2章顸备知识 2,1概率论基本
  3. 所属分类:Python

    • 发布日期:2019-03-04
    • 文件大小:24mb
    • 提供者:weixin_34749051
  1. python实现感知机模型的示例

  2. from sklearn.linear_model import Perceptron import argparse #一个好用的参数传递模型 import numpy as np from sklearn.datasets import load_iris #数据集 from sklearn.model_selection import train_test_split #训练集和测试集分割 from loguru import logger #日志输出,不清楚用法 #python is a
  3. 所属分类:其它

    • 发布日期:2020-12-16
    • 文件大小:52kb
    • 提供者:weixin_38545332
  1. 基于感知机Perceptron的鸢尾花分类实践

  2. 文章目录1. 感知机简介2. 编写感知机实践2.1 数据处理2.2 编写感知机类2.3 多参数组合运行3. sklearn 感知机实践4. 附完整代码 本文将使用感知机模型,对鸢尾花进行分类,并调整参数,对比分类效率。 1. 感知机简介 感知机(perceptron)是二类分类的线性分类模型 输入:实例的特征向量 输出:实例的类别,取 +1 和 -1 二值 感知机对应于输入空间(特征空间)中将实例划分为正负两类的分离超平面,属于判别模型 旨在求出将训练数据进行线性划分的分离超平面,为此,导入基于
  3. 所属分类:其它

    • 发布日期:2020-12-22
    • 文件大小:176kb
    • 提供者:weixin_38608688
  1. 统计学习方法笔记(1)—感知机

  2. 统计学习方法笔记(1)—感知机引言感知机模型模型简述感知机算法思想感知机算法性质算例实现导入数据使用前两类莺尾花数据利用感知机进行线性分类小结参考轻松一刻 引言 下午拜读了李航老师的《统计学习方法》的感知机部分,随带跑了一个相关算例,于是将所学的知识整理到了这篇博文。不足之处望笔者多加指正。 感知机模型 模型简述 感知机主要的功能就是把一个数据集进行二分类,例如输入人的身高体重,感知机可以判断该人是否肥胖,是机器学习中相对简单的一个模型。开始正文前,我们先约定好符号: 模型的大致实现流程为:
  3. 所属分类:其它

    • 发布日期:2020-12-22
    • 文件大小:412kb
    • 提供者:weixin_38734008
  1. Datawhale 组对学习打卡营 任务11: 注意力机制和Seq2seq模型

  2. 目录 注意力机制 Softmax屏蔽 点积注意力 测试 多层感知机注意力 测试 总结 引入注意力机制的Seq2seq模型 解码器 训练 训练和预测 import math import torch import torch.nn as nn import os def file_name_walk(file_dir): for root, dirs, files in os.walk(file_dir): # print(root, root) # 当前目录路径
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:372kb
    • 提供者:weixin_38660579
  1. 机器学习之支撑向量机SVM

  2. 1 基本概念 支持向量机(support vector machines, SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性分类器。SVM的的学习策略就是间隔最大化,可形式化为一个求解凸二次规划的问题,也等价于正则化的合页损失函数的最小化问题。SVM的的学习算法就是求解凸二次规划的最优化算法。 原理 SVM学习的基本想法是求解能够正确划分训练数据集并且几何间隔最大的分离超平面。如下图所示,即为分
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:832kb
    • 提供者:weixin_38631042
  1. 过拟合欠拟合及其解决方案;梯度消失梯度爆炸;循环神经网络进阶;机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer;卷积神经网络基础;leNet;卷积神经网络进阶

  2. 1.过拟合欠拟合及其解决方案 一类是模型无法得到较低的训练误差,我们将这一现象称作欠拟合(underfitting)。 模型的训练误差远小于它在测试数据集上的误差,我们称该现象为过拟合(overfitting)。 在实践中,我们要尽可能同时应对欠拟合和过拟合。 2.梯度消失梯度爆炸 深度模型有关数值稳定性的典型问题是消失(vanishing)和爆炸(explosion)。 假设一个层数为LLL的多层感知机的第lll层H(l)\boldsymbol{H}^{(l)}H(l)的权重参数为W(l)\b
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:477kb
    • 提供者:weixin_38500117
  1. 感知机模型

  2. 一、什么是感知机模型? 感知机是线性分类的二分类模型,输入为实例的特征向量,输出为实例的类别,分别用1和-1表示。感知机将输入空间(特征空间)中的实例划分为正负两类分离的超平面,旨在求出将训练集进行线性划分的超平面,为此,导入基于误分类的损失函数,利用梯度下降法对损失函数进行极小化,求得最优解。感知机是神经网络和支持向量机的基础。 二、感知机模型 感知机的函数公式为:f(x)=sign(w⋅x+b)f(x)=sign(w·x+b)f(x)=sign(w⋅x+b) 其中www和bbb为感知机模型参
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:172kb
    • 提供者:weixin_38633897
  1. 机器学习算法总结2:感知机和支持向量机

  2. 感知机于1957年由Rosenblatt提出,是神经网络与支持向量机的基础。感知机二类分类的线性分类模型,其输入为实例的特征向量,输出为实例的类别,取+1和-1二值,该模型属于判别模型,旨在求出将训练数据进行线性划分的分离超平面。 1.模型: 假设数据集满足线性可分性,由输入空间到输出空间的决策函数如下: w为权值(或权值向量),b为偏置,w·x表示w和x的内积,sign是符号函数,即: 1.向量内积(向量点乘、数量积):对两个向量的对应位置一一相乘求和的结果,点乘的结果是一个标量; 2.向
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:170kb
    • 提供者:weixin_38663452
  1. Text-classification:不使用现有的库使用朴素贝叶斯和感知机实现文本分类-源码

  2. 文字分类 训练一个分类器(KNN,SVM),对文本数据进行分类,类别可包括体育,财经,房地产,家居,教育等十个类别。 文本分类的一般流程可以分为五步:(1)对文本进行预处理,包括分词操作和替换词去除等;(2)特征提取与特征选择,选择文本特征提取方法,替代特征进行选择(3)文本表示,选择合适的方法表示选择的特征,作为分类的依据;(4)分类器构建,选择合适的分类算法训练得到对应的文本分类器;结果评估,选择合适的评估指标,对分类结果进行评价 #实验内容1.构建数据集2.数据预处理(分词,去除重置词)3
  3. 所属分类:其它

  1. statistics_model:统计学系模型实现-源码

  2. 统计学习模型学习笔记 记录统计学习模型学习过程中的笔记,其中包括使用sklearn来测试模型,同时包括自己构建模型来实现模型的训练等等。 统计学系方法概论 感知机 k近邻法 k均值 增加k-means聚类算法。 朴素贝叶斯法 决策树 逻辑斯蒂回归与最大熵模型 其中增加了线性回归的推导。 支持向量机 提升方法 AdaBoost 增加AdaBoost方法。 EM算法及其推广 隐马尔可夫模型 条件随机场 深度学习 额外增加神经网络这一章节补充神经网络相关知识,主要是BP误差反向传播算法的推导。 有线电
  3. 所属分类:其它

  1. Makeathon3077_OpenSource_Sages:此网络应用预测电子商务数据交易欺诈。 它基于机器学习和神经网络模型-源码

  2. 电子商务欺诈预测器Web应用程序 网络链接: : 此网络应用预测电子商务数据交易欺诈。 它基于机器学习和神经网络模型。 训练了7种机器学习算法(决策树,随机森林,逻辑回归,支持向量机,梯度提升和K最近邻和KMeans算法)和2种深度学习神经网络模型(单层感知器和多层感知器)并对其进行了测试使用电子交易数据集(kaggle)和精度最高的百分位数的模型来构建网络预测器。 该Web应用程序是使用以下库在Python中构建的: 流线型 大熊猫 斯克莱恩 海生的 matplotlib.pypl
  3. 所属分类:其它

    • 发布日期:2021-03-07
    • 文件大小:195kb
    • 提供者:weixin_42144604
  1. 基于视觉导航的输电线杆塔方位确定方法

  2. 通过分析杆塔镂空的结构特征,提出了一种基于杆塔梯度方向直方图(HOG)的由远及近杆塔部件检测方法。使用不同方位下杆塔HOG特征训练多层感知机(MLP),得到训练后的分类模型,将航拍图像输入到分类模型中识别杆塔的方位,最终实现了局部目标的检测。相比于深度学习神经网络,该方法的分类特征更加明确,更具有代表性。实验结果表明,所提方法的检测准确率比Faster RCNN(Regions with Convolutional Neural Networks)方法高27.9%,运算时间比Faster RCN
  3. 所属分类:其它

  1. 学习:数据是石油的未来,挖掘数据的潜在价值非常有意义。 这个图书馆记录了我的机器学习之路-源码

  2. 深度学习演示 奇妙清单 1. 2.(感谢北京大学张志华团队的翻译工作,中文版点击) 一,记录深度学习例子: 名称 目录 咖啡 TensorFlow 茶野 凯拉斯 二,记录历程点滴: 掌握机器学习相关的概念和计算公式,包括有/无/半监督学习,强化学习,分类/回归/标注,聚类;训练集/验证集,交叉验证,测试集;数据预处理,正则化,归一化;损失函数,经验风险最小化,结构风险最小化,最优化算法;训练误差,泛化误差,欠拟合,过拟合;准确率,召回率,F1值,ROC和AUC; 掌握机器学习主流的模型及其
  3. 所属分类:其它

    • 发布日期:2021-02-06
    • 文件大小:53mb
    • 提供者:weixin_42131633
  1. python实现感知机线性分类模型示例代码

  2. 前言 感知器是分类的线性分类模型,其中输入为实例的特征向量,输出为实例的类别,取+1或-1的值作为正类或负类。感知器对应于输入空间中对输入特征进行分类的超平面,属于判别模型。 通过梯度下降使误分类的损失函数最小化,得到了感知器模型。 本节为大家介绍实现感知机实现的具体原理代码: 运 行结果如图所示: 总结 以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对软件开发网的支持。 您可能感兴趣的文章:
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:145kb
    • 提供者:weixin_38577551
  1. TensorFlow实现MLP多层感知机模型

  2. 一、多层感知机简介 Softmax回归可以算是多分类问题logistic回归,它和神经网络的最大区别是没有隐含层。理论上只要隐含节点足够多,即时只有一个隐含层的神经网络也可以拟合任意函数,同时隐含层越多,越容易拟合复杂结构。为了拟合复杂函数需要的隐含节点的数目,基本上随着隐含层的数量增多呈指数下降的趋势,也就是说层数越多,神经网络所需要的隐含节点可以越少。层数越深,概念越抽象,需要背诵的知识点就越少。在实际应用中,深层神经网络会遇到许多困难,如过拟合、参数调试、梯度弥散等。 过拟合是机器学习中的
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:88kb
    • 提供者:weixin_38716590
« 12 3 »