点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 支持向量机在正则化路径上的近似模型选择
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
scikit-learn-0.21.3-中文文档.pdf
scikit-learn 是基于 Python 语言的机器学习工具 简单高效的数据挖掘和数据分析工具 可供大家在各种环境中重复使用 建立在 NumPy ,SciPy 和 matplotlib 上 开源,可商业使用 - BSD许可证1.监督学习 1广义线性模型 °1.1.1普通最小二乘法 1.1.2岭回归 1.1.3LaSs0 o1.1.4多任务 Lasso 115弹性网络 o116多任务弹性网络 1.1.7最小角回归 1.1. 8 LARS Lasso 1.19正交匹配追踪法(OMP 1.1.1
所属分类:
机器学习
发布日期:2019-08-24
文件大小:40mb
提供者:
h394266861
支持向量机在正则化路径上的近似模型选择
模型选择问题是支持向量机的基本问题。基于核矩阵近似计算和正则化路径,提出一个新的支持向量机模型选择方法。 -α,证明KMA-α的近似偏差界定理,并得到支持矢量机的模型近似误差界。然后,提出近似模型选择算法AMSRP。该算法应用KMA-α计算的核矩阵的低秩近似来提高支持最后,通过标准数据集上的对比实验,验证了AMSRP的可行性和计算效率。实验结果显示,AMSRP可在保证测试集准确率的降低,显着地提高支持向量机模型选择的效率。理论分析与实验结果表明,AMSRP是一种合理,高效的模型选择算法。
所属分类:
其它
发布日期:2021-03-10
文件大小:1mb
提供者:
weixin_38512659