您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 改进的核磁共振图像分割与偏移场恢复耦合模型

  2. 生物医学图像分析可以辅助医生诊断疾病,然而,图像中常含有噪声以及灰度不均匀现象,使得传统的图像分割方法不能得到满意的结果。针对这些问题,构造一种基于图像区域信息的偏移场恢复耦合模型,使得模型可以在分割的同时恢复出图像偏移场。为了得到全局最优解并提高算法效率,将该模型改进成1范数下的凸函数,并使用基于Split-Bregman方法对该耦合模型进行快速求解。实验结果表明,本文方法可以降低噪声和灰度不均匀的影响,得到较准确的分割结果和偏移场信息,而且大大地降低了计算复杂度。
  3. 所属分类:其它

  1. 改进的非局部FCM脑核磁共振图像分割与偏移场恢复耦合模型

  2. 核磁共振图像技术可用于对疾病的辅助诊断,然而受成像机制的影响往往图像中含有噪声以及偏移场,使得传统的模糊C均值(FCM)算法很难得到较好的分割结果.为此,提出一种基于FCM算法的分割与偏移场恢复耦合模型.首先将偏移场耦合到模型中,以降低灰度不均匀对分割的影响;其次将非局部信息融入模型中,使其在降低噪声影响的同时还能保持细长拓扑结构区域信息;最后引入隶属度正则项,以降低隶属度在过渡区域的影响,改善模型的分割效果.实验结果证明,文中模型对噪声具有较好的鲁棒性,并且在分割过程中能较好地恢复图像偏移场,
  3. 所属分类:其它