Pascal基本算法整理,学习用很好 1.数论算法 求两数的最大公约数 function gcd(a,b:integer):integer; begin if b=0 then gcd:=a else gcd:=gcd (b,a mod b); end ; 求两数的最小公倍数 function lcm(a,b:integer):integer; begin if a0 do inc(lcm,a); end; 素数的求法 A.小范围内判断一个数是否为质数: function prime (n:
用于打比赛的ACM算法模板 常用函数与STL 重要公式与定理 1. Fibonacci Number 2. Lucas Number 3. Catalan Number 4. Stirling Number(Second Kind) 5. Bell Number 6. Stirling's Approximation 7. Sum of Reciprocal Approximation 8. Young Tableau 9. 整数划分 10. 错排公式 11. 三角形内切圆半径公式 12. 三
算法大全(C,C++) 一、 数论算法 1.求两数的最大公约数 function gcd(a,b:integer):integer; begin if b=0 then gcd:=a else gcd:=gcd (b,a mod b); end ; 2.求两数的最小公倍数 function lcm(a,b:integer):integer; begin if a0 do inc(lcm,a); end; 3.素数的求法 A.小范围内判断一个数是否为质数: function prime (n:
ACM 算法模板集 Contents 一. 常用函数与STL 二. 重要公式与定理 1. Fibonacci Number 2. Lucas Number 3. Catalan Number 4. Stirling Number(Second Kind) 5. Bell Number 6. Stirling's Approximation 7. Sum of Reciprocal Approximation 8. Young Tableau 9. 整数划分 10. 错排公式 11. 三角形内切