点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 机器学习之逻辑回归(LogisticRegression)
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
机器学习之逻辑回归(LogisticRegression)
之前的文章中,我们讨论的垃圾邮件分类实际上就是一个分类问题。类似的例子还有很多,例如一个在线交易网站判断一次交易是否带有欺诈性(有些人可以使用偷来的信用卡,你懂的)。再如,之前判断一个肿瘤是良性的还是恶性的,也是一个分类问题。在以上的这些例子中,我们想预测的是一个二值的变量,或者为0,或者为1;或者是一封垃圾邮件,或者不是;或者是带有欺诈性的交易,或者不是;或者是一个恶性肿瘤,或者不是。我们可以将因变量(dependantvariable)可能属于的两个类分别称为负向类(negativeclas
所属分类:
其它
发布日期:2021-02-24
文件大小:710kb
提供者:
weixin_38742453
机器学习之逻辑回归(LogisticRegression)
之前的文章中,我们讨论的垃圾邮件分类实际上就是一个分类问题。类似的例子还有很多,例如一个在线交易网站判断一次交易是否带有欺诈性(有些人可以使用偷来的信用卡,你懂的)。再如,之前判断一个肿瘤是良性的还是恶性的,也是一个分类问题。在以上的这些例子中,我们想预测的是一个二值的变量,或者为0,或者为1;或者是一封垃圾邮件,或者不是;或者是带有欺诈性的交易,或者不是;或者是一个恶性肿瘤,或者不是。我们可以将因变量(dependantvariable)可能属于的两个类分别称为负向类(negative cla
所属分类:
其它
发布日期:2021-01-27
文件大小:710kb
提供者:
weixin_38631978