将深度学习模型应用于自动驾驶的感知任务上,模型预测结果的准确性和实时性是两个重要指标。一方面,为了确保准确可靠的感知结果,我们会希望选择多个准确性尽可能高的模型并行执行,从而在完成多种感知任务的同时,提供一定的冗余度,但这不可避免的意味着更高的计算量和资源消耗。另一方面,为了确保车辆在各种突发情况下都能及时响应,我们会要求感知模块的执行速度必须与自动驾驶场景的车速相匹配,这就对深度学习模型的实时性提出了很高的要求。另外,在保证高准确性和高实时性的前提下,我们还希望降低模型对计算平台的算力、内存带