您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 斯坦福机器学习ML公开课笔记1-15(完整版、带目录索引和NG原版讲义)

  2. 1-15节全部完整版讲义!超清分享~~~(附赠目录索引和NG原版讲义) 含金量高,独家整理~~ 目录如下: 公开课笔记1-2——线性规划、梯度下降、正规方程组 公开课笔记3——局部加权回归、逻辑斯蒂回归、感知器算法 公开课笔记4——牛顿方法、指数分布族、广义线性模型 公开课笔记5——生成学习、高斯判别、朴素贝叶斯 公开课笔记6——NB多项式模型、神经网络、SVM初步 公开课笔记7——最优间隔分类、原始/对偶问题、SVM对偶 公开课笔记8———核技法、软间隔分类器、SMO算法 公开课笔记9—偏差
  3. 所属分类:机器学习

    • 发布日期:2017-11-07
    • 文件大小:8mb
    • 提供者:u012416259
  1. BAT机器学习面试1000题系列

  2. BAT机器学习面试1000题系列 1 前言 1 BAT机器学习面试1000题系列 2 1 归一化为什么能提高梯度下降法求解最优解的速度? 22 2 归一化有可能提高精度 22 3 归一化的类型 23 1)线性归一化 23 2)标准差标准化 23 3)非线性归一化 23 35. 什么是熵。机器学习 ML基础 易 27 熵的引入 27 3.1 无偏原则 29 56. 什么是卷积。深度学习 DL基础 易 38 池化,简言之,即取区域平均或最大,如下图所示(图引自cs231n) 40 随机梯度下降 4
  3. 所属分类:机器学习

    • 发布日期:2018-03-07
    • 文件大小:10mb
    • 提供者:qq_38873863
  1. 线性回归预测

  2. • 逻辑回归是线性回归的一种,线性回归是回归的一种 • 线性回归可以用在预测或分类,多维度(feature)线性问题求解上 • 可以用最小二乘法,梯度下降法求解线性预测函数的系数 • 梯度下降法的核心步骤是:设置系数范围,设定系数梯度,固定其他系数,对某一个系数穷举求方差最小最优解
  3. 所属分类:Java

    • 发布日期:2018-04-26
    • 文件大小:181kb
    • 提供者:hyy80688
  1. 梯度下降求解逻辑回归

  2. 机器学习算法,线性回归于逻辑回归推导过程及代码
  3. 所属分类:机器学习

    • 发布日期:2018-11-28
    • 文件大小:342kb
    • 提供者:weixin_38326918
  1. 统计学习方法_李航

  2. 统计学习是计算机及其应用领域的一门重要的学科。本书全面系统地介绍了统计学习的主要方法,特别是监督学习方法,包括感知机、k近邻法、朴素贝叶斯法、决策树、逻辑斯谛回归与最大熵模型、支持向量机、提升方法、em算法、隐马尔可夫模型和条件随机场等。除第1章概论和最后一章总结外,每章介绍一种方法。叙述从具体问题或实例入手,由浅入深,阐明思路,给出必要的数学推导,便于读者掌握统计学习方法的实质,学会运用。为满足读者进一步学习的需要,书中还介绍了一些相关研究,给出了少量习题,列出了主要参考文献。 《统计学习方法
  3. 所属分类:机器学习

  1. 机器学习算法基础学习总结

  2. 机器学习算法基础学习总结2.基本算法 2.1 Logistic回归 优点:计算代价不高,易于理解和实现。 缺点:容易欠拟合,分类精度可能不高 适用数据类型:数值型和标称型数据。 类别:分类算法。 试用场景:解决二分类问题。 简述: Logistic回归算法基于 Sigmoid函数,或者说 Sigmoid就是逻辑回归函数。 Sigmoid函数定义如下:1/(1-exp(-z))。函数值域范围(0,1)。可以用来做分 类器。 Sigmoid函数的函数曲线如下: 逻辑凹归模型分解如下:(1)首先将不同
  3. 所属分类:机器学习

    • 发布日期:2019-07-02
    • 文件大小:305kb
    • 提供者:abacaba
  1. 商品用户行为数据处理中的数学问题(3)

  2. 随着网络时代不断的发展,网购已成为人民大众主要购物方式,基于大数据预测用户网购行为成为了重要的问题,本文通过所给 20000 用户数据对其商品行为进行预测并给出评价指标。以ut-8格式编码;包含 user id和 item id两列(均为 string类型),要求去除重复。例 如 user id I item id 100000 2345 100000 2478 100001 127900 100002 207245 评估指标 釆用经典的精确度( precision)、召回率( recall〕和
  3. 所属分类:其它

    • 发布日期:2019-03-15
    • 文件大小:1mb
    • 提供者:zrg_hzr_1
  1. 求解逻辑回归—-梯度下降

  2. 文章目录案例简介数据可视化建立分类器sigmoid函数:映射到概率的函数model 函数: 返回预测结果值cost : 根据参数计算损失gradient : 计算每个参数的梯度方向descent : 进行参数更新精度 案例简介 参考资料 逻辑回归函数 Python数据分析与机器学习-逻辑回归案例分析 案例内容 现在有一份学生两次考试的结果的数据 根据数据建立一个逻辑回归模型来预测一个学生的入学概率。 数据内容:两个考试的申请人的分数和录取决定。 # 导入相应的包 import numpy as
  3. 所属分类:其它

    • 发布日期:2020-12-21
    • 文件大小:268kb
    • 提供者:weixin_38596485
  1. Python利用逻辑回归分类实现模板

  2. Logistic Regression Classifier逻辑回归主要思想就是用最大似然概率方法构建出方程,为最大化方程,利用牛顿梯度上升求解方程参数。 优点:计算代价不高,易于理解和实现。 缺点:容易欠拟合,分类精度可能不高。 使用数据类型:数值型和标称型数据。 好了,下面开始正文。 算法的思路我就不说了,我就提供一个万能模板,适用于任何纬度数据集。 虽然代码类似于梯度下降,但他是个分类算法 定义sigmoid函数 def sigmoid(x): return 1/(1+np
  3. 所属分类:其它

    • 发布日期:2020-12-20
    • 文件大小:42kb
    • 提供者:weixin_38653155
  1. MachineLearning:机器学习-源码

  2. 机器学习 使用各种数据集并对其进行观察来实现机器学习算法。 1.使用法线方程和梯度下降的线性回归 一种线性回归模型,可通过两个特征Math SAT和Verb SAT预测大学生的GPA。 a)使用正态方程法训练模型。 b)使用梯度下降法训练模型。 c)以不同的学习率alpha进行周围环境的比赛 2.使用手语数据进行逻辑回归 a)Sigmoid函数的实现b)参数初始化以及正向和反向计算c)梯度下降的隐含性和预测功能d)评估矩阵计算 3.支持向量机 使用迷你数据集,Q矩阵的计算和决策方程的求解方程的玩
  3. 所属分类:其它

    • 发布日期:2021-03-11
    • 文件大小:30mb
    • 提供者:weixin_42122986
  1. 神经网络的原理和BP算法

  2. 神经网络,中间我们假设有一个合适的θ矩阵,来完成我们的前向传播,那么我们如何来选择θ呢?开始我们的讨论内容,构造一个神经网络,使用反向传播求解θ。神经网络模型:说明:L:神经网络层数Sl:第l层神经元个数K:输出的多分类情况中的分类数这时候,要求一个好的神经网络就要对所有的边权θ进行优化,这时候我们想到的是损失函数和梯度下降。图中,我们看出神经网络的代价函数是逻辑回归代价函数的一种普遍化表达,我们可以理解为有多个逻辑回归单元。所以,如果是二分类问题代价函数是逻辑回归的代价函数形式,如果是多分类,
  3. 所属分类:其它

    • 发布日期:2021-02-24
    • 文件大小:806kb
    • 提供者:weixin_38626242
  1. from_scratch:从头开始实现的ML示例-源码

  2. 从头开始 从头开始实施的ML /优化示例。 该代码库旨在在ML和优化常用功能背后建立直觉。 现在,该代码库包含以下示例: KMeans聚类 主成分分析(PCA):刮擦法使用幂迭代来计算奇异值和特征向量 线性回归:对多个自变量进行线性回归。 通过求解法线方程,梯度下降和随机(小批量)梯度下降确定的参数估计值 使用最速下降法和共轭梯度法求解线性方程组Ax = b 逻辑回归
  3. 所属分类:其它

    • 发布日期:2021-02-16
    • 文件大小:124kb
    • 提供者:weixin_42137723
  1. 神经网络的原理和BP算法

  2. 神经网络,中间我们假设有一个合适的θ矩阵,来完成我们的前向传播,那么我们如何来选择θ呢?开始我们的讨论内容,构造一个神经网络,使用反向传播求解θ。神经网络模型:说明:L:神经网络层数Sl:第l层神经元个数K:输出的多分类情况中的分类数 这时候,要求一个好的神经网络就要对所有的边权θ进行优化,这时候我们想到的是损失函数和梯度 下降。图中,我们看出神经网络的代价函数是逻辑回归代价函数的一种普遍化表达,我们可以理解为有多个 逻辑回归单元。所以,如果是二分类问题代价函数是逻辑回归的代价函数形式,如果是
  3. 所属分类:其它

    • 发布日期:2021-01-27
    • 文件大小:806kb
    • 提供者:weixin_38590996
  1. 机器学习——从线性回归到逻辑回归【附详细推导和代码】

  2. 本文始发于个人公众号:TechFlow,原创不易,求个关注 在之前的文章当中,我们推导了线性回归的公式,线性回归本质是线性函数,模型的原理不难,核心是求解模型参数的过程。通过对线性回归的推导和学习,我们基本上了解了机器学习模型学习的过程,这是机器学习的精髓,要比单个模型的原理重要得多。 新关注和有所遗忘的同学可以点击下方的链接回顾一下之前的线性回归和梯度下降的内容。 一文讲透梯度下降法 详细推导线性回归模型 回归与分类 在机器学习当中,模型根据预测结果的不同分为两类,如果我们希望模型预测一
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:309kb
    • 提供者:weixin_38715097
  1. 编程作业2 logistic_regression(逻辑回归)(吴恩达)

  2. 文章目录编程作业2 logistic_regression(逻辑回归)1.准备数据2.sigmoid 函数3.cost function(代价函数)4.gradient descent(梯度下降)5.拟合参数6.用训练集预测和验证7.寻找决策边界8.推导 编程作业2 logistic_regression(逻辑回归) 推荐运行环境:python 3.6 建立一个逻辑回归模型来预测一个学生是否被大学录取。根据两次考试的结果来决定每个申请人的录取机会。有以前的申请人的历史数据, 可以用它作为逻辑
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:662kb
    • 提供者:weixin_38625708