点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 深度学习;卷积神经网络
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
卷积神经网络(二)
深度学习之卷积神经网络;从字符到句子的卷积神经网络。
所属分类:
讲义
发布日期:2017-03-03
文件大小:408kb
提供者:
abrohambaby
深度学习-卷积神经网络学习
深度学习;卷积神经网络;非常好的资料
所属分类:
深度学习
发布日期:2017-07-12
文件大小:5mb
提供者:
laden6868
CNN卷积神经网络实现Mnist手写数字识别数据集
1、Mnist_cnn.py 该脚本文件 用TensorFlow框架 实现CNN卷积神经网络处理Mnist手写数字识别数据集,准确率达到99.21%; 2、Mnist_cnn_tensorboard.py 该脚本文件在Mnist_cnn.py的基础上实现可视化。
所属分类:
Python
发布日期:2018-05-26
文件大小:5kb
提供者:
asialee_bird
卷积神经网络详解
卷积神经网络的详细介绍文档,把卷积网络的各个部分都分析得很透测;目标函数;损失函数;激活函数;
所属分类:
深度学习
发布日期:2018-07-24
文件大小:48mb
提供者:
u014574279
深度学习卷积神经网络可检测和分类番茄植物叶病
番茄作物是市场上的重要主食,并且是日常食用的最常见的作物之一。 植物或农作物疾病导致生产质量和数量下降; 因此,对这些疾病的检测和分类非常必要。 感染番茄植物的疾病有很多类型,例如细菌斑,晚疫病,裁缝叶斑,番茄花叶和黄色弯曲。 早期发现植物病害可提高产量并提高其质量。 当前,智能方法已被广泛用于检测和分类这些疾病。 这种方法可以帮助农民识别类型吗? 感染农作物的疾病 当前工作的主要目的是应用一种现代技术来识别和分类疾病。 智能技术基于使用卷积神经网络(CNN)的技术,而卷积神经网络是机器学习的一
所属分类:
其它
发布日期:2020-05-13
文件大小:1mb
提供者:
weixin_38694566
基于深度时空卷积神经网络的人群异常行为检测和定位
针对公共场合人群异常行为检测准确率不高和训练样本缺乏的问题,提出一种基于深度时空卷积神经网络 的人群异常行为检测和定位的方法。首先针对监控视频中人群行为的特点,综合利用静态图像的空间特征和前后帧 的时间特征,将二维卷积扩展到三维空间,设计面向人群异常行为检测和定位的深度时空卷积神经网络;为了定位 人群异常行为,将视频分成若干子区域,获取视频的子区域时空数据样本,然后将数据样本输入设计的深度时空卷 积神经网络进行训练和分类,实现人群异常行为的检测与定位。同时,为了解决深度时空卷积神经网络训练时样本
所属分类:
算法与数据结构
发布日期:2019-04-06
文件大小:745kb
提供者:
weixin_44684342
基于卷积神经网络的二指机械手抓取姿态生成研究_李耿磊
本课题立足机械手自主抓取,研究利用卷积神经网络实现物体表面抓取点生成的解决方案。本课题以场景的深度图像作为输入信息,采取 “先采样,后预测”的两步走抓取生成方案。首先利用 Laplace 方法在深度图像中提取物体边缘像素点,并利用对跖法生成抓取空间;然后基于重要性采样方法从抓取空间中采样获得候选抓取集,最后利用训练好的抓取预测卷积神经网络模型预测候选集每个抓取的成功置信度,取其中极大者作为结果指导机器人完成抓取。 为将卷积神经网络应用于抓取预测,本课题建立了基于卷积神经网络的抓取预测模型。将
所属分类:
机器学习
发布日期:2020-11-22
文件大小:4mb
提供者:
WhiffeYF
深度学习d5:卷积神经网络基础;leNet;卷积神经网络进阶
卷积神经网络基础 卷积神经网络:包括卷积层、池化层 二维卷积层: 最常用,用于处理图像数据,将输入和卷积核做互相关运算,并加上一个标量偏置来得到输出。 其模型参数=卷积核+标量偏置。 训练模型的时候,通常我们先对卷积核随机初始化,然后不断迭代卷积核和偏差,即可通过数据学习核数组。每次迭代中,将输出与真实值进行比较,然后计算梯度进行更新。 可用来进行图像边缘检测。 互相关运算和卷积运算: 两者十分相似,将核数组上下翻转、左右翻转,再与输入数组做互相关运算,这一过程就是卷积运算。两者都是学习出来的,
所属分类:
其它
发布日期:2021-01-07
文件大小:42kb
提供者:
weixin_38548394
动手学深度学习PyTorch版–Task4、5–机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer;;卷积神经网络基础;leNet;卷积神经网络进阶
一.机器翻译及相关技术 机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。 1.Encoder-Decoder encoder:输入到隐藏状态 decoder:隐藏状态到输出 class Encoder(nn.Module): def __init__(self, **kwargs): super(Encoder, self)
所属分类:
其它
发布日期:2021-01-06
文件大小:1mb
提供者:
weixin_38674512
笔记:动手学深度学习pytorch(卷积神经网络基础;leNet;卷积神经网络进阶)
– 卷积神经网络基础 – 卷积层 – 1×\boldsymbol\times× 1 卷积层 形状为1×11 \times 11×1的卷积核,我们通常称这样的卷积运算为1×11 \times 11×1卷积,称包含这种卷积核的卷积层为1×11 \times 11×1卷积层。 1×11 \times 11×1卷积核可在不改变高宽的情况下,调整通道数。1×11 \times 11×1卷积核不识别高和宽维度上相邻元素构成的模式,其主要计算发生在通道维上。假设我们将通道维当作特征维,将高和宽维度上的元素当
所属分类:
其它
发布日期:2021-01-06
文件大小:799kb
提供者:
weixin_38528180
利用卷积神经网络分析航拍图像来检测电力线绝缘子缺陷
由于电力线绝缘子的故障导致输电系统的故障,因此广泛使用基于空中平台的绝缘子检查系统。 绝缘子缺陷检测是针对航空图像中的复杂背景进行的,这提出了一个有趣但具有挑战性的问题。基于手工特征或浅层学习技术的传统方法只能在特定的检测条件下(例如何时)定位绝缘子并检测故障。在某些对象范围内或在特定照明条件下,具有足够的先验知识,背景干扰小。 本文讨论了使用航空图像自动检测绝缘子缺陷,准确定位从实际检查环境捕获的输入图像中出现的绝缘子缺陷的方法。我们提出了一种新颖的深度卷积神经网络(CNN)。级联体系结构,用
所属分类:
其它
发布日期:2021-03-14
文件大小:2mb
提供者:
weixin_38709100
基于特征整合的卷积神经网络草地分类算法
为提高遥感影像草地分类的精度,分析了卷积神经网络中提取图像特征的特点,提出了一种 基于特征整合深度神经网络的遥感影像特征提取算法。首先,将遥感影像数据进行PCA白化处理,降低 数据之间的相关性,加快神经网络学习的速率;其次,将从卷积神经网络中提取到的浅层特征和深层特征 进行双线性整合,使得整合后的新特征更加完善和优化;最后,对遥感数据进行训练,由于新特征中有效信 息的增加,使得特征表达能力得到提高,达到提高草地分类准确率的目的。实验结果表明:该算法能够有 效地提高草地分类的准确率,分类精度达到9
所属分类:
其它
发布日期:2021-03-07
文件大小:478kb
提供者:
weixin_38689976
卷积神经网络及其在图像处理中的应用
卷积神经网络(ConstitutionalNeuralNetworks,CNN)是在多层神经网络的基础上发展起来的针对图像分类和识别而特别设计的一种深度学习方法。先回顾一下多层神经网络:多层神经网络包括一个输入层和一个输出层,中间有多个隐藏层。每一层有若干个神经元,相邻的两层之间的后一层的每一个神经元都分别与前一层的每一个神经元连接。在一般的识别问题中,输入层代表特征向量,输入层的每一个神经元代表一个特征值。在图像识别问题中,输入层的每一个神经元可能代表一个像素的灰度值。但这种神经网络用于图像识
所属分类:
其它
发布日期:2021-02-24
文件大小:457kb
提供者:
weixin_38527987
基于卷积神经网络的短切毡缺陷分类
基于卷积神经网络,提出了短切毡缺陷分类的方法。通过旋转、平移和翻转对数据集进行扩充,解决了小数据样本在深度卷积神经网络中的过拟合问题;利用迁移学习的思想加速网络收敛,提高了网络的泛化能力;对比了不同网络结构并选择较好的网络进行数据集验证。结果表明,所提方法能够实现短切毡缺陷的有效分类,准确率为93%。
所属分类:
其它
发布日期:2021-02-12
文件大小:7mb
提供者:
weixin_38635794
Food-Recipe-CNN:使用深度卷积神经网络将食物图像转化为食谱-源码
用于烹饪食谱检索的深度学习食物图像识别系统 演示:DeepChef 总览 更新:博客文章现已发布。 有关更多信息,请访问! 例如用法,请访问此Jupyter Notebook: Maturaarbeit 2018:这项工作利用Keras的深度卷积神经网络将图像分类为230种食物并输出匹配的食谱。 数据集包含来自chefkoch.de的> 400'000食物图像和> 300'000食谱。 几乎没有任何其他领域能像营养一样对人类福祉产生类似的影响。 每天,用户都会在社交网络上发布无数的
所属分类:
其它
发布日期:2021-02-03
文件大小:199mb
提供者:
weixin_42129005
基于迁移学习和深度卷积神经网络的乳腺肿瘤诊断系统
乳腺肿瘤计算机辅助诊断(CAD)系统在医学检测和诊断中的应用日益重要。为了区分核磁共振图像(MRI)中肿瘤与非肿瘤,利用深度学习和迁移学习方法,设计了一种新型乳腺肿瘤CAD系统:1)对数据集进行不平衡处理和数据增强;2)在MRI数据集上,利用卷积神经网络(CNN)提取CNN特征,并利用相同的支持向量机分类器,计算每层CNN的特征图的分类F1分数,选取分类性能最高的一层作为微调节点,其后维度较低层为连接新网络节点;3)在选取的网络接入节点,连接新设计的两层全连接层组成新的网络,利用迁移学习,对新网
所属分类:
其它
发布日期:2021-01-27
文件大小:7mb
提供者:
weixin_38686542
《动手学深度学习》卷积神经网络基础;leNet;卷积神经网络进阶
卷积神经网络基础;leNet;卷积神经网络进阶卷积神经网络基础二位互相关运算二维卷积层互相关运算与卷积运算特征图与感受野填充和步幅填充:在输入的高宽两侧填充元素,通常填充0。步幅:卷积核在输入数组上每次滑动的行数列数。多输入通道和多输出通道1×11×11×1卷积层池化LeNetLeNet模型卷积神经网络进阶AlexNet使用重复元素的网络(VGG)网络中的网络(NIN)GoogleNet 卷积神经网络基础 介绍的是最常见的二维卷积层,常用于处理图像数据。 二位互相关运算 卷积核数组在输入数组上
所属分类:
其它
发布日期:2021-01-20
文件大小:504kb
提供者:
weixin_38522636
《动手学深度学习Pytorch版》Task5-卷积神经网络
卷积神经网络基础 需要理解卷积神经网络的基础概念,主要是卷积层和池化层、填充、步幅、输入通道和输出通道的含义。 几个经典的模型 LeNet AlexNet VGG NiN GoogLeNet 1×1卷积核作用 放缩通道数:通过控制卷积核的数量达到通道数的放缩。 增加非线性:1×1卷积核的卷积过程相当于全连接层的计算过程,并且还加入了非线性激活函数,从而可以增加网络的非线性。 计算参数少 LeNet vs AlexNet 注:5*5 Conv(16),这里的16指的是输出的通道数 LeNet的图
所属分类:
其它
发布日期:2021-01-20
文件大小:214kb
提供者:
weixin_38605967
《动手学深度学习》Task04 :卷积神经网络基础;leNet;卷积神经网络进阶
Task04 :卷积神经网络基础;leNet;卷积神经网络进阶 1.卷积神经网络基础 下面是一些卷积神经网络的基本概念: 二维互相关运算 二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小于输入数组,卷积核在输入数组上滑动,在每个位置上,卷积核与该位置处的输入子数组按元素相乘并求和,得到输出数组中相应位置的元素。图1展示了一个互相关运算的例子,阴影
所属分类:
其它
发布日期:2021-01-20
文件大小:865kb
提供者:
weixin_38567813
ElitesAI·动手学深度学习PyTorch版学习笔记-卷积神经网络基础;leNet;卷积神经网络进阶
宅家中看到Datawhale的学习号召,在大牛云集的群上找到了一个很佛系的小组,战战兢兢地开始了小白的深度学习之旅。感谢Datawhale、伯禹教育、和鲸科技,感谢课程制作者、组织者、各位助教以及其他志愿者! 1 卷积神经网络基础 1.1 二维卷积 本小节介绍了二维卷积,主要用于图像数据(刚好是二维的数据)处理。 二维卷积通过输入二维数据和二维核数据的运算(卷积),得到一个小于输入数据的二维输出数据,但是该输出数据依然部分保存了输入数据的信息。输出的二维数据可以看作输入数据的一个缩略图,也叫
所属分类:
其它
发布日期:2021-01-20
文件大小:50kb
提供者:
weixin_38652196
«
1
2
3
4
5
»