您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 煤矸石图像分类方法

  2. 针对人工排矸法、机械湿选法、γ射线分选法等传统煤矸石分选方法无法兼顾快速高效性、安全无害性、简单操作性的问题,提出了基于机器视觉的煤矸石图像分类方法。对煤矸石图像进行增强、平滑去噪等预处理,采用基于距离变换的分水岭算法实现煤矸石图像分割提取。针对煤矿矸石分割图像,选取煤矸石图像的HOG特征及灰度共生矩阵,分别以支持向量机、随机森林、K近邻算法作为分类器进行基于特征提取的煤矸石分类识别;分别建立浅层卷积神经网络和基于ImageNet数据集预训练的VGG16网络,进行基于卷积神经网络的煤矸石分类识别
  3. 所属分类:其它

  1. 一种煤矸石优化识别方法

  2. 针对输送带磨损造成煤矸石图像目标检测不准确、影响煤矸石识别准确率等问题,提出了一种煤矸石优化识别方法。采集的图像经过裁切、去噪、灰度化等预处理后,利用训练好的CornerNetSqueeze深度学习模型判断图像中是否存在待检测的煤或矸石,若存在则定位煤或矸石在图像中的位置,有效降低目标检测时输送带背景干扰;对定位区域进行灰度直方图分析,依据图像灰度直方图的三阶矩特征参数对煤矸石进行分类,判定是煤还是矸石,提高识别准确率。实验结果表明,该方法识别准确率为91.3%,单张图像识别时间为41 ms,具
  3. 所属分类:其它

    • 发布日期:2020-07-24
    • 文件大小:955kb
    • 提供者:weixin_38687928