随着面向服务计算技术的快速发展,越来越多具有相同或相似功能的 Web 服务被部署在网络上。用户进行服务选择之前,通常需要根据历史调用信息对未使用过的服务QoS进行预测。由于历史调用信息收集过程缺乏有效的监督和约束机制,所采样的QoS信息往往容易受到结构化噪声污染,从而导致现有方法预测性能急剧下降。为了克服这个困难,通过将Web服务QoS预测问题建模为L2,1范数正则化矩阵补全问题,提出了一类基于结构化噪声矩阵补全的Web服务QoS预测方法。真实数据集上的实验结果表明,该方法不仅能精确地辨识出Qo
WSN无线链路不可靠,分组丢失现象普遍存在,且基于压缩感知(CS)数据收集算法对分组丢失十分敏感。首先,通过实验对分组丢失率和基于CS数据重构精度关系进行定量研究,提出极稀疏块观测矩阵,在降低每轮数据采集能耗的同时,也保持观测矩阵的近似低秩性质。其次,结合矩阵补全(MC)技术与CS 技术,提出基于极稀疏块观测矩阵的压缩感知数据收集算法,在一个采集周期内进行数据收集,利用 MC 技术恢复丢失数据,减少分组丢失对数据收集的影响;利用CS技术重构全网数据,减少数据收集量,降低节点在数据收集时所需能耗,