您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. BP神经网络代码

  2. gitchat资料。从零开始学习BP神经网络。 本文主要叙述了经典的全连接神经网络结构以及前向传播和反向传播的过程。通过本文的学习,读者应该可以独立推导全连接神经网络的传播过程,对算法的细节烂熟于心。另外,由于本文里的公式大部分是我自己推导的,所以可能会有瑕疵,希望读者不吝赐教。   虽然这篇文章实现的例子并没有什么实际应用场景,但是自己推导一下这些数学公式对理解神经网络内部的原理很有帮助,继这篇博客之后,我还计划写一个如何自己推导并实现卷积神经网络的教程,如果有人感兴趣,请继续关注我!
  3. 所属分类:深度学习

    • 发布日期:2017-10-22
    • 文件大小:3mb
    • 提供者:u014303046
  1. 基于BP神经网络的人脸识别

  2. BP神经网络是一种多层的前馈神经网络,其主要的特点是:信号是前向传播的,而误差是反向传播的,依次调节隐含层到输出层的权重和偏置,输入层到隐含层的权重和偏置。 数学推导网上有很多,需要明确的就一点,神经网络学习是通过样本来不断调整输入层至隐含层的权值wi ,隐含层至输出层的权值wo,以及对应的阈值 bi 和 bo ,属于黑盒,设置完参数即可。
  3. 所属分类:机器学习

    • 发布日期:2018-07-29
    • 文件大小:9mb
    • 提供者:jave_f
  1. 模式识别作业-习题解答+代码.docx

  2. 反向传播框架下推导学习规则。总结BP算法。描述自组织算法的计算步骤,给出训练算法的框图。指出卷积神经网络需要计算的权重数量;相对于全连接和非权值共享,所减少的权重数量。编写两个通用的三层前向神经网络反向传播算法程序,一个采用批量方式更新权重,另一个采用单样本方式更新权重。隐含层不同结点数目对训练精度的影响;观察不同的梯度更新步长对训练的影响,并给出一些描述或解释。
  3. 所属分类:电信

    • 发布日期:2020-03-27
    • 文件大小:514kb
    • 提供者:qq_36918538
  1. references-源码

  2. 参考 使用SoftPool完善激活下采样 提出一种基于softmax的池化方式,利用softmax函数计算感受野中每个元素的权重,再对感受野内元素进行加权求和,逐步反向传播时同样采用相同权重进行运算。 辍学作为贝叶斯近似:代表深度学习中的模型不确定性 本文通过理论推导证明有包含dropout的任意神经网络近似等价于深度高斯过程,从而推导引入在包含dropout的神经网络框架下计算输出不确定性只需要随机多次前向传播,样本方差即可描述不确定性。 NLNL:噪音标签的负面学习 由于标签通常可能存在
  3. 所属分类:其它

    • 发布日期:2021-03-15
    • 文件大小:19mb
    • 提供者:weixin_42139460
  1. 卷积神经网络反向传播理论推导

  2. 本文来自于csdn,本文首先简单介绍CNN的结构,并不作详细介绍.然后讲解反向传播理论。本文只要讲解CNN的反向传播,CNN的反向传播,其实并不是大多所说的和全连接的BP类似,CNN的全连接部分的BP是与它相同,但是CNN中卷积--池化、池化--卷积部分的BP是不一样的,仔细推导,还是有很多细节地方需要思考的,比如1、在前向传播的过程中,卷积层的输入,是通过卷积核与前一层的输出特征图卷积得来的,那么在反向传播的过程中该怎么处理?这个就与全连接神经网络不同了。2、由于在前向传播的时候,池化层会对前
  3. 所属分类:其它

  1. 卷积神经网络反向传播理论推导

  2. 本文来自于csdn,本文首先简单介绍CNN的结构,并不作详细介绍.然后讲解反向传播理论。本文只要讲解CNN的反向传播,CNN的反向传播,其实并不是大多所说的和全连接的BP类似,CNN的全连接部分的BP是与它相同,但是CNN中卷积--池化、池化--卷积部分的BP是不一样的,仔细推导,还是有很多细节地方需要思考的,比如1、在前向传播的过程中,卷积层的输入,是通过卷积核与前一层的输出特征图卷积得来的,那么在反向传播的过程中该怎么处理?这个就与全连接神经网络不同了。2、由于在前向传播的时候,池化层会对前
  3. 所属分类:其它

  1. 神经网络的前向传播和反向传播推导

  2. 神经网络的前向传播和反向传播推导 x1x_{1}x1​和x2x_{2}x2​表示输入 wijw_{ij}wij​表示权重 bijb_{ij}bij​表示偏置 σi\sigma_{i}σi​表示激活函数,这里使用sigmoid激活函数 outoutout表示输出 yyy表示真实值 η\etaη表示学习率 前向传播 h1=w11x1+w13x2+b11h_{1}=w_{11}x_{1}+w_{13}x_{2}+b_{11}h1​=w11​x1​+w13​x2​+b11​,α1=σ(h1)=11+e
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:99kb
    • 提供者:weixin_38571544