您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. [学习记录-1]联邦学习知识

  2. 综述文献:A Survey on Federated Learning Systems- Vision, Hype and Reality for Data Privacy and Protection 部分知识整理 文献总结了联邦学习系统的特点和分类。 机器学习算法需要大量数据,单组织数据无法训练高质量模型。由于政策法规(数据保护条例)限制,不同组织的数据隔离,形成数据孤岛(data islands),无法简单共享数据。保护数据隐私同时,开发具有良好预测性能的联邦学习系统是一个挑战。 联邦学习
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:158kb
    • 提供者:weixin_38546817
  1. 联邦学习算法综述

  2. 近年来,联邦学习作为解决数据孤岛问题的技术被广泛关注,已经开始被应用于金融、医疗健康以及智慧城市等领域。从3个层面系统阐述联邦学习算法。首先通过联邦学习的定义、架构、分类以及与传统分布式学习的对比来阐述联邦学习的概念;然后基于机器学习和深度学习对目前各类联邦学习算法进行分类比较和深入分析;最后分别从通信成本、客户端选择、聚合方式优化的角度对联邦学习优化算法进行分类,总结了联邦学习的研究现状,并提出了联邦学习面临的通信、系统异构、数据异构三大难题和解决方案,以及对未来的期望。
  3. 所属分类:其它