您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 台湾大学支持向量机matlab源码库

  2. LIBSVM 是台湾大学林智仁 (Chih-Jen Lin) 博士等开发设计的一个操作简单、易于使用、快速有效的通用 SVM 软件包,可以解决分类问题(包括 C- SVC 、n - SVC )、回归问题(包括 e - SVR 、 n - SVR )以及分布估计( one-class-SVM )等问题,提供了线性、多项式、径向基和 S 形函数四种常用的核函数供选择,可以有效地解决多类问题、交叉验证选择参数、对不平衡样本加权、多类问题的概率估计等。
  3. 所属分类:C++

    • 发布日期:2010-01-03
    • 文件大小:86kb
    • 提供者:jeniss
  1. 用Matlab编写的SVM工具包

  2. 基于SVM原理,求解模式分类问题。 实现支持向量回归(SVR)
  3. 所属分类:其它

    • 发布日期:2012-06-27
    • 文件大小:150kb
    • 提供者:seraph_
  1. SVM支持向量机代码解释

  2. SVM支持向量机,预测分类 回归,支持向量机(Support Vector Machine,SVM)是Corinna Cortes和Vapnik等于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。 在机器学习中,支持向量机(SVM,还支持矢量网络)是与相关的学习算法有关的监督学习模型,可以分析数据,识别模式,用于分类和回归分析。
  3. 所属分类:机器学习

    • 发布日期:2018-05-08
    • 文件大小:415kb
    • 提供者:qq_39925861
  1. 支持向量机知识点概要

  2. 支持向量机(Support Vector Machine,常简称为SVM)是一种监督式学习的方法,可广泛地应用于统计分类以及回归分析。它是Corinna Cortes和Vapnik等于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。
  3. 所属分类:讲义

    • 发布日期:2018-08-13
    • 文件大小:162kb
    • 提供者:weixin_42961228
  1. 支持向量机模型

  2. 支持向量机(英语:Support Vector Machine,常简称为SVM)是一种监督式学习的方法,可广泛地应用于统计分类以及回归分析。它是Corinna Cortes和Vapnik等于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。这族分类器的特点是他们能够同时最小化经验误差与最大化几何边缘区,因此支持向量机也被称为最大边缘区分类器。
  3. 所属分类:其它

    • 发布日期:2018-08-30
    • 文件大小:2mb
    • 提供者:yuanfang_1_2
  1. 支持向量机(数学建模)

  2. 第三十一章 支持向量机(Support Vector Machine,SVM)是Corinna Cortes和Vapnik等于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。 在机器学习中,支持向量机(SVM,还支持矢量网络)是与相关的学习算法有关的监督学习模型,可以分析数据,识别模式,用于分类和回归分析。
  3. 所属分类:算法与数据结构

    • 发布日期:2018-09-15
    • 文件大小:328kb
    • 提供者:weixin_42142409
  1. 提供一个Matlab的BP神经网络的基础资料-附件2.txt

  2. 提供一个Matlab的BP神经网络的基础资料-附件2.txt 第一节内容:包括神经网络的基础知识,BP网络的特点,bp主要应用的场合,使用时应注意的问题。 什么是神经网络? 神经网络是由很多神经元组成的,首先我们看一下,什么是神经元 3962604722133983950.jpg 上面这个图表示的就是一个神经元,我们不管其它书上说的那些什么树突,轴突的。用个比较粗浅的解释,可能不太全面科学,但对初学者很容易理解: 1、我们把输入信号看成你在matlab中需要输入的数据,输进去神经网络后 2、这
  3. 所属分类:其它

  1. scikit-learn-0.21.3-中文文档.pdf

  2. scikit-learn 是基于 Python 语言的机器学习工具 简单高效的数据挖掘和数据分析工具 可供大家在各种环境中重复使用 建立在 NumPy ,SciPy 和 matplotlib 上 开源,可商业使用 - BSD许可证1.监督学习 1广义线性模型 °1.1.1普通最小二乘法 1.1.2岭回归 1.1.3LaSs0 o1.1.4多任务 Lasso 115弹性网络 o116多任务弹性网络 1.1.7最小角回归 1.1. 8 LARS Lasso 1.19正交匹配追踪法(OMP 1.1.1
  3. 所属分类:机器学习

    • 发布日期:2019-08-24
    • 文件大小:40mb
    • 提供者:h394266861
  1. 机器学习算法基础学习总结

  2. 机器学习算法基础学习总结2.基本算法 2.1 Logistic回归 优点:计算代价不高,易于理解和实现。 缺点:容易欠拟合,分类精度可能不高 适用数据类型:数值型和标称型数据。 类别:分类算法。 试用场景:解决二分类问题。 简述: Logistic回归算法基于 Sigmoid函数,或者说 Sigmoid就是逻辑回归函数。 Sigmoid函数定义如下:1/(1-exp(-z))。函数值域范围(0,1)。可以用来做分 类器。 Sigmoid函数的函数曲线如下: 逻辑凹归模型分解如下:(1)首先将不同
  3. 所属分类:机器学习

    • 发布日期:2019-07-02
    • 文件大小:305kb
    • 提供者:abacaba
  1. 基于风量-风压复合特征的矿井通风系统阻变型故障诊断无监督学习模型

  2. 目前矿井通风系统阻变型故障诊断方法需要收集故障样本方可进行故障位置和故障量诊断,且故障位置诊断和故障量诊断需要分别建立对应分类和回归数学模型。针对矿井通风系统阻变型故障样本收集难度大和故障位置及故障量无法同时进行故障诊断的问题,将矿井通风系统阻变型故障诊断转换为最小欧氏距离的优化求解问题,提出一种无需样本参与训练的矿井通风系统阻变型故障诊断无监督学习模型,利用协方差矩阵自适应进化策略方法对无监督学习模型进行优化求解,实现分类与回归预测一体化。通过进行风量、风压单一特征和风量-风压复合特征的对比模
  3. 所属分类:其它

  1. 改进遗传算法的支持向量机特征选择解决方案介绍

  2. 支持向量机是一种在统计学习理论的基础上发展而来的机器学习方法[1],通过学习类别之间分界面附近的精确信息,可以自动寻找那些对分类有较好区分能力的支持向量,由此构造出的分类器可以使类与类之间的间隔最大化,因而有较好的泛化性能和较高的分类准确率。由于支持向量机具有小样本、非线性、高维数、避免局部最小点以及过学习现象等优点,所以被广泛运用于故障诊断、图像识别、回归预测等领域。但是如果缺少了对样本进行有效地特征选择,支持向量机在分类时往往会出现训练时间过长以及较低的分类准确率,这恰恰是由于支持向量机无法
  3. 所属分类:其它

    • 发布日期:2020-10-20
    • 文件大小:211kb
    • 提供者:weixin_38659955
  1. 如何实现一个KNN算法

  2. 教你如何自己实现KNN算法 KNN算法,也称为K邻近算法,可以解决回归和分类问题,但解决分类问题才是它的优势。 KNN算法的本质就是寻找与我们提供的数据相似的k个样本,然后判断这k个样本的标签,最后统计每个标签出现的次数,次数最多的标签,就会被当作我们提供的数据的标签。 先说说工作流程: 机器学习是基于数据的,所以要先将实物转换为向量、矩阵或张量的形式 通过欧式距离计算出测试样本与其他样本之间的距离 将距离按照小到大排序,并取前K个值 判断前K个值相应的标签,并进行统计 统计最多的标签即为预测结
  3. 所属分类:其它

    • 发布日期:2020-12-21
    • 文件大小:53kb
    • 提供者:weixin_38611254
  1. BP神经网络与Python实现

  2. 本文来自于cnblogs,人工神经网络是一种经典的机器学习模型,随着深度学习的发展神经网络模型日益完善.联想大家熟悉的回归问题,神经网络模型实际上是根据训练样本创造出一个多维输入多维输出的函数,并使用该函数进行预测,网络的训练过程即为调节该函数参数提高预测精度的过程.神经网络要解决的问题与最小二乘法回归解决的问题并无根本性区别.回归和分类是常用神经网络处理的两类问题,如果你已经了解了神经网络的工作原理可以在http://playground.tensorflow.org/上体验一个浅层神经网络的
  3. 所属分类:其它

    • 发布日期:2021-02-25
    • 文件大小:158kb
    • 提供者:weixin_38712899
  1. BP神经网络python简单实现

  2. 本文来自于CSDN,介绍了BP神经网络原理以及如何使用Python来实现BP神经网络等相关知识。人工神经网络是一种经典的机器学习模型,随着深度学习的发展神经网络模型日益完善.联想大家熟悉的回归问题,神经网络模型实际上是根据训练样本创造出一个多维输入多维输出的函数,并使用该函数进行预测,网络的训练过程即为调节该函数参数提高预测精度的过程.神经网络要解决的问题与最小二乘法回归解决的问题并无根本性区别.回归和分类是常用神经网络处理的两类问题.感知机(Perceptron)是一个简单的线性二分类器,它保
  3. 所属分类:其它

    • 发布日期:2021-02-24
    • 文件大小:158kb
    • 提供者:weixin_38658085
  1. 一种基于改进SiameseRPN的全景视频目标跟踪算法

  2. 在全景视频目标跟踪过程中,由于光照条件变化复杂和目标相对镜头运动时尺度变化剧烈,目标跟踪算法存在精度低和适用性差等问题。为了解决这个问题,提出了一种基于改进SiameseRPN的全景视频目标跟踪算法。首先采用MobileNetV3中的网络结构提取深度特征,使算法对全景视频序列中出现的场景缺陷有更好的适应性,并利用Squeeze and Excite模块增加网络对特征选择的敏感度。提出并构建了一种基于双线性插值的特征融合模块,运用双线性插值的方法使输出的后三层深度特征具有相同尺度,并融合这三层特征
  3. 所属分类:其它

    • 发布日期:2021-02-21
    • 文件大小:21mb
    • 提供者:weixin_38571878
  1. BP神经网络与Python实现

  2. 本文来自于cnblogs,人工神经网络是一种经典的机器学习模型,随着深度学习的发展神经网络模型日益完善.联想大家熟悉的回归问题,神经网络模型实际上是根据训练样本创造出一个多维输入多维输出的函数,并使用该函数进行预测, 网络的训练过程即为调节该函数参数提高预测精度的过程.神经网络要解决的问题与最小二乘法回归解决的问题并无根本性区别.回归和分类是常用神经网络处理的两类问题,如果你已经了解了神经网络的工作原理可以在http://playground.tensorflow.org/上体验一个浅层神经网络
  3. 所属分类:其它

    • 发布日期:2021-01-27
    • 文件大小:151kb
    • 提供者:weixin_38701683
  1. BP神经网络python简单实现

  2. 本文来自于CSDN,介绍了BP神经网络原理以及如何使用Python来实现BP神经网络等相关知识。人工神经网络是一种经典的机器学习模型,随着深度学习的发展神经网络模型日益完善.联想大家熟悉的回归问题,神经网络模型实际上是根据训练样本创造出一个多维输入多维输出的函数,并使用该函数进行预测, 网络的训练过程即为调节该函数参数提高预测精度的过程.神经网络要解决的问题与最小二乘法回归解决的问题并无根本性区别.回归和分类是常用神经网络处理的两类问题.感知机(Perceptron)是一个简单的线性二分类器,它
  3. 所属分类:其它

    • 发布日期:2021-01-27
    • 文件大小:152kb
    • 提供者:weixin_38526208