您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 过拟合、欠拟合、梯度消失与梯度爆炸-Task3

  2. 1. 过拟合、欠拟合及其解决方案 本节主要讲了3个点,1. 过拟合、欠拟合的概念 2. 权重衰减 3. 丢弃法 其中权重衰减只讲了L2正则化,其实还有L1正则化、L12正则化等。 丢弃法其实就是Dropout,只是翻译成了中文。 Inverted-Dropout Inverted-Dropout是实现 dropout 的方法。假设对第i层进i行 dropout: p = 0.8 di = np.random.rand(ai.shape[0], ai.shape[1]) < p ai = n
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:48kb
    • 提供者:weixin_38686677
  1. 《动手学深度学习》pytorch版笔记2

  2. 《动手学深度学习》pytorch版笔记2 Task3 过拟合、欠拟合及其解决方案 这部分内容比较简单,写下问题吧,再挖几个坑 1.模型复杂度如何改变,三阶到一阶等 2.L2范数正则化为什么是权重衰减的一种方式? 梯度消失,梯度爆炸 1.初始化过程 2.标签偏移的概念 3.数据处理过程 循环神经网络进阶 GRU,LSTM中的门结构实现起来还挺复杂的,有空再自己实现一遍吧。另外深度循环神经网络貌似叫多层循环神经网络,印象中一般不会堆叠很多层,有空再研究一下吧 Task4 机器翻译及相关技术 机器翻
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:112kb
    • 提供者:weixin_38686677
  1. 动手学深度学习——task3过拟合、欠拟合以及解决方案、梯度消失和梯度爆炸

  2. 过拟合和欠拟合的概念 过拟合:模型训练误差远小于在测试数据集上的误差,也就是说数据在训练时模型的预测效果好,但是在测试的数据上(要预测的新数据)不能很好的进行预测。 欠拟合:模型无法得到较低的训练误差,也就是说,在训练数据的过程中,就不能很好的对数据进行预测。 主要因素模型复杂度和训练数据集大小 模型复杂度 为了解释模型复杂,以简单多项式函数拟合为例。给定一个由标量数据特征 x 和对应的标量标签 y 组成的训练数据集,多项式函数拟合的目标是找一个 K 阶多项式函数来近似 y 。 在上式中,
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:133kb
    • 提供者:weixin_38538021
  1. 《动手学深度学习》task3——过拟合、欠拟合及解决方案,梯度消失、梯度爆炸,循环神经网络进阶笔记

  2. 系统学习《动手学深度学习》点击这里: 《动手学深度学习》task1_1 线性回归 《动手学深度学习》task1_2 Softmax与分类模型 《动手学深度学习》task1_3 多层感知机 《动手学深度学习》task2_1 文本预处理 《动手学深度学习》task2_2 语言模型 《动手学深度学习》task2_3 循环神经网络基础 《动手学深度学习》task3_1 过拟合、欠拟合及其解决方案 《动手学深度学习》task3_2 梯度消失、梯度爆炸 《动手学深度学习》task3_3 循环神经网络进阶 《
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:190kb
    • 提供者:weixin_38584058
  1. 动手学深度学习Task3

  2. 过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶 1、过拟合和欠拟合 过拟合:模型的训练误差远小于它在测试数据集上的误差,我们称该现象为过拟合 欠拟合:模型训练误差无法降低. 如何应对欠拟合和过拟合?在这里我们重点讨论两个因素:模型复杂度和训练数据集大小。 1.1.1、模型复杂度 为了解释模型复杂度,我们以多项式函数拟合为例。给定一个由标量数据特征 x 和对应的标量标签 y 组成的训练数据集,多项式函数拟合的目标是找一个 K 阶多项式函数 来近似y.在上式中,wk是模型的权重参数
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:188kb
    • 提供者:weixin_38687807
  1. 动手学深度学习(Pytorch版)task3-5打卡

  2. 对于task3-5的内容进行打卡 Task03:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶 模型复杂度和误差之间的关系 权重衰减的计算公式: Xavier初始化 梯度裁剪 循环神经网络中较容易出现梯度衰减或梯度爆炸,这会导致网络几乎无法训练。裁剪梯度(clip gradient)是一种应对梯度爆炸的方法。假设我们把所有模型参数的梯度拼接成一个向量 g ,并设裁剪的阈值是 θ 。裁剪后的梯度为: GRU 重置门用于捕捉时间序列里的短期依赖关系 更新门有助于捕捉时间
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:755kb
    • 提供者:weixin_38735790