您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. L1-L12.rar

  2. 2020 年参加伯禹教育pytorch培训资料 包括L12 Transformer.L11注意力机制和Seq2seq模型L10机器翻译L9循环神经网络进阶 L8梯度消失、梯度爆炸L7过拟合欠拟合及其解决方案L6循环神经网络L5语言模型与数据集L4文本预处理L3Softmax与分类模型L2多层感知机L1 线性回归 博文https://blog.csdn.net/xiuyu1860L1到L11所有jupyter noteobok 文件下载
  3. 所属分类:深度学习

    • 发布日期:2020-02-15
    • 文件大小:105kb
    • 提供者:xiuyu1860
  1. L7过拟合欠拟合及其解决方案.ipynb

  2. 2020 年参加伯禹教育pytorch培训-过拟合欠拟合及其解决方案知识单元 、 此为jupyter notebook格式源文件 文章见:https://blog.csdn.net/xiuyu1860/article/details/104313139
  3. 所属分类:深度学习

    • 发布日期:2020-02-14
    • 文件大小:43kb
    • 提供者:xiuyu1860
  1. 过拟合欠拟合及其解决方案 pytorch

  2. 过拟合、欠拟合及其解决方案,内容: 1. 过拟合、欠拟合的概念 2. 权重衰减 3. 丢弃法 总结 欠拟合现象:模型无法达到一个较低的误差 过拟合现象:训练误差较低但是泛化误差依然较高,二者相差较大
  3. 所属分类:机器学习

    • 发布日期:2020-02-13
    • 文件大小:12kb
    • 提供者:qq_40441895
  1. Pytorch学习第二次打卡

  2. Pytorch学习第二次打卡 目录 文章目录Pytorch学习第二次打卡目录过拟合、欠拟合及其解决方案欠拟合过拟合解决方法梯度消失,梯度爆炸卷积神经网络卷积层池化层常见卷积网络 过拟合、欠拟合及其解决方案 欠拟合 模型无法得到较低的训练误差,我们将这一现象称作欠拟合(underfitting); 线性函数拟合,如图: 过拟合 另一类是模型的训练误差远小于它在测试数据集上的误差,我们称该现象为过拟合(overfitting)。训练样本不足,如下图: 给定训练数据集,模型复杂度和误差之间的关系:
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:99kb
    • 提供者:weixin_38658568
  1. 《动手学深度学习》PyTorch实现(过拟合、欠拟合及其解决方案)

  2. 笔记整理 代码整理 L2 范数正则化(regularization) %matplotlib inline import torch import torch.nn as nn import numpy as np import sys sys.path.append(/home/kesci/input) import d2lzh1981 as d2l # L2范数正则化 def fit_and_plot_pytorch(wd): # 对权重参数衰减。权重名称一般是以weight结
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:765kb
    • 提供者:weixin_38641150
  1. 《动手学深度学习》pytorch版笔记2

  2. 《动手学深度学习》pytorch版笔记2 Task3 过拟合、欠拟合及其解决方案 这部分内容比较简单,写下问题吧,再挖几个坑 1.模型复杂度如何改变,三阶到一阶等 2.L2范数正则化为什么是权重衰减的一种方式? 梯度消失,梯度爆炸 1.初始化过程 2.标签偏移的概念 3.数据处理过程 循环神经网络进阶 GRU,LSTM中的门结构实现起来还挺复杂的,有空再自己实现一遍吧。另外深度循环神经网络貌似叫多层循环神经网络,印象中一般不会堆叠很多层,有空再研究一下吧 Task4 机器翻译及相关技术 机器翻
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:112kb
    • 提供者:weixin_38686677
  1. 《动手学深度学习Pytorch版》Task3-过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸

  2. 过拟合、欠拟合 训练/泛化误差 训练误差(training error)和泛化误差(generalization error)。通俗来讲,前者指模型在训练数据集上表现出的误差,后者指模型在任意一个测试数据样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似。 欠拟合 模型无法得到较低的训练误差,我们将这一现象称作欠拟合(underfitting) 过拟合 模型的训练误差远小于它在测试数据集上的误差,我们称该现象为过拟合(overfitting) 容易引起过拟合、欠拟合的其中两个因素: 模
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:685kb
    • 提供者:weixin_38708461
  1. 动手学深度学习Pytorch版本学习笔记 Task 03

  2. 1.过拟合、欠拟合及其解决方案 1.1对于过拟合、欠拟合的理解 我们探究模型训练中经常出现的两类典型问题: 一类是模型无法得到较低的训练误差,我们将这一现象称作欠拟合(underfitting); 另一类是模型的训练误差远小于它在测试数据集上的误差,我们称该现象为过拟合(overfitting)。 在实践中,我们要尽可能同时应对欠拟合和过拟合。虽然有很多因素可能导致这两种拟合问题,在这里我们重点讨论两个因素:模型复杂度和训练数据集大小。 1.2模型复杂度的影响 1.3训练数据集大小影响 影响欠
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:208kb
    • 提供者:weixin_38750861
  1. 《动手学pytorch》Task:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络

  2. 一、过拟合和欠拟合 训练误差和测试误差都大,欠拟合 underfitting。模型复杂度不够。 训练误差小于测试误差,过拟合 overfitting。 影响因素之一:训练数据集大小 影响欠拟合和过拟合的另一个重要因素是训练数据集的大小。一般来说,如果训练数据集中样本数过少,特别是比模型参数数量(按元素计)更少时,过拟合更容易发生。此外,泛化误差不会随训练数据集里样本数量增加而增大。因此,在计算资源允许的范围之内,我们通常希望训练数据集大一些,特别是在模型复杂度较高时,例如层数较多的深度学习模型
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:242kb
    • 提供者:weixin_38646659
  1. ElitesAI·动手学深度学习PyTorch版Task03打卡

  2. Task3打卡 1、过拟合、欠拟合及其解决方案 目录: 相关的基本概念 权重衰减 过拟合、欠拟合解决方法 1、相关的基本概念 训练误差: 模型在训练数据集上表现出的误差。 泛化误差: 模型在任意一个测试数据样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似。 欠拟合(underfitting): 模型无法得到较低的训练误差。 过拟合(overfitting): 模型的训练误差远小于它在测试数据集上的误差。 注:在实践中,我们要尽可能同时应对欠拟合和过拟合。虽然有很多因素可能导致这两种拟
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:432kb
    • 提供者:weixin_38641876
  1. [动手学深度学习PyTorch笔记三]

  2. 一 过拟合、欠拟合及其解决方案 欠拟合(underfitting): 一类是模型无法得到较低的训练误差,我们将这一现象称作 过拟合(overfitting):模型的训练误差远小于它在测试数据集上的误差,我们称该现象为。 在实践中,我们要尽可能同时应对欠拟合和过拟合。两个主要影响因素:模型复杂度和训练数据集大小。模型复杂度过低会导致欠拟合,过高则导致过拟合,训练数据集过小容易发生过拟合。因此需选取适当的模型复杂度和计算能力范围内可以承受的较大训练数据集。 解决方案 1 权重衰减 权重衰减等价于 L
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:59kb
    • 提供者:weixin_38686860
  1. ElitesAI·动手学深度学习PyTorch版(第二次打卡)

  2. • Task03:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸 知识点 1.训练误差(training error)和泛化误差(generalization error) 训练误差:训练数据集上表现出的误差 泛化误差:模型在测试数据样本上表现出的误差 验证误差:我们可以预留一部分在训练数据集和测试数据集以外的数据代入模型求得得误差。训练数据集和测试数据集以外的数据被称为验证数据集,简称验证集(validation set) 2.过拟合、欠拟合 欠拟合(underfitting):模型无法得到较
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:424kb
    • 提供者:weixin_38523728
  1. 【Pytorch】动手学深度学习(二)

  2. 学习安排如下: Task03:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶(1天) Task04:机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer(1天) Task05:卷积神经网络基础;leNet;卷积神经网络进阶(1天) Task03:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶(1天) 梯度消失部分,主要是协变量偏移、标签偏移、概念偏移三个概念,第一次接触; 循环神经网络以及过拟合部分比较容易理解; Task04:机器翻译及
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:50kb
    • 提供者:weixin_38717359
  1. pytorch实现task3——过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶

  2. 过拟合、欠拟合及解决方案在之前自己已经使用较多较熟练,故跳过。 梯度消失、梯度爆炸 深度模型有关数值稳定性的典型问题是消失(vanishing)和爆炸(explosion)。 当神经网络的层数较多时,模型的数值稳定性容易变差。 在神经网络中,通常需要随机初始化模型参数。随机初始化模型参数的方法有很多。在线性回归的简洁实现中,我们使用torch.nn.init.normal_()使模型net的权重参数采用正态分布的随机初始化方式。不过,PyTorch中nn.Module的模块参数都采取了较为合理的
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:73kb
    • 提供者:weixin_38690739
  1. 动手学深度学习PyTorch版 | (3)过拟合、欠拟合及其解决方案

  2. 文章目录一、过拟合、欠拟合概念二、多项式函数拟合实验2.1 初始化模型参数2.2 定义、训练和测试模型三阶多项式函数拟合(正常)线性函数拟合(欠拟合)训练样本不足(过拟合)2.3 权重衰减L2 范数正则化(regularization)2.4 丢弃法丢弃法从零开始的实现简洁实现小结 一、过拟合、欠拟合概念 训练模型中经常出现的两类典型问题: 欠拟合:模型无法得到较低的训练误差 过拟合:模型的训练误差远小于它在测试数据集上的误差 在实践中,我们要尽可能同时应对欠拟合和过拟合。有很多因素可能导致这两
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:295kb
    • 提供者:weixin_38526650
  1. 动手学深度学习Pytorch版Task03

  2. 过拟合、欠拟合及其解决方案 1.概念 无法得到较低的训练误差称作欠拟合 得到的误差极小即远小于训练集的误差称作过拟合 2.模型选择 验证数据集 从严格意义上讲,测试集只能在所有超参数和模型参数选定后使用一次。不可以使用测试数据选择模型,如调参。由于无法从训练误差估计泛化误差,因此也不应只依赖训练数据选择模型。鉴于此,我们可以预留一部分在训练数据集和测试数据集以外的数据来进行模型选择。这部分数据被称为验证数据集,简称验证集(validation set)。例如,我们可以从给定的训练集中随机选取一小
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:159kb
    • 提供者:weixin_38623366
  1. 动手学深度学习Pytorch版本学习笔记 Task3

  2. 1.过拟合、欠拟合及其解决方案 过拟合:模型无法得到较低的训练误差,我们将这一现象称作欠拟合(underfitting); 欠拟合:模型的训练误差远小于它在测试数据集上的误差,我们称该现象为过拟合(overfitting)。 在实践中,我们要尽可能同时应对欠拟合和过拟合。 解决过拟合的方法:权重衰减(L2 范数正则化)和丢弃法 2.梯度消失和梯度爆炸 a.梯度消失和梯度爆炸 假设一个层数为LL的多层感知机的第ll层H(l)H(l)的权重参数为W(l)W(l),输出层H(L)H(L)的权重参数为W
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:50kb
    • 提供者:weixin_38694800
  1. 动手学深度学习(Pytorch版)task3-5打卡

  2. 对于task3-5的内容进行打卡 Task03:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶 模型复杂度和误差之间的关系 权重衰减的计算公式: Xavier初始化 梯度裁剪 循环神经网络中较容易出现梯度衰减或梯度爆炸,这会导致网络几乎无法训练。裁剪梯度(clip gradient)是一种应对梯度爆炸的方法。假设我们把所有模型参数的梯度拼接成一个向量 g ,并设裁剪的阈值是 θ 。裁剪后的梯度为: GRU 重置门用于捕捉时间序列里的短期依赖关系 更新门有助于捕捉时间
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:755kb
    • 提供者:weixin_38735790
  1. Pytorch学习笔记——过拟合、欠拟合及其解决方案

  2. 过拟合、欠拟合及其解决方案 1、预备知识 1.1 模型选择 验证数据集:测试集不可用于模型参数的调试,所以需要从训练数据集中分离出一部分数据作为验证数据集用来调参 1.2 K折交叉验证 目前来说深度学习研究的普遍情况是数据量不够庞大,而我们要把模型数据分成训练集、验证集,这样就会导致训练数据更加少,K折交叉验证可以解决这个问题。算法思想大概是,将训练数据集均分成K个不同子集,第 i 次选取 K[ i ] 作为验证集,其余的 K-1 个数据作为训练集,这样我们就有了K组数据,最后将K次训练误差和验
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:192kb
    • 提供者:weixin_38717156
  1. 深度学习PyTorch实践打卡(二)

  2. ##一、典型的神经网络结构 (1)传统的多层感知机 (2)卷积神经网络,包括 a. AlexNet 真正让卷积神经网络走进大家视野的网络 b. VGG 用更小的卷积核,在相同的感受野下具有更深的网络结构 c. GoogleNet 不同size的卷积核的Ensemble d. ResNet e. DenseNet (3) 循环/递归神经网络 a. LSTM b. GRU 二、Seq2Seq模型 三、注意力机制 四、过拟合、欠拟合及其解决方案 (1)过拟合、欠拟合的概念 一类是模型无法得到较低的训练
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:40kb
    • 提供者:weixin_38555019
« 12 »