您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. Standford机器学习 逻辑回归(Logistic Regission)以及过拟合问题解决(Regularization)

  2. Standford机器学习 逻辑回归(Logistic Regission)以及过拟合问题解决(Regularization
  3. 所属分类:专业指导

  1. 有关模型梯度爆炸,消失的定义及策略;过拟合和欠拟合.docx

  2. 这是在伯禹课堂上学习内容的总结,具体包含梯度爆炸、梯度消失等定义并举例(利用线性回归模型);过拟合和欠拟合的定义,如何避免的方法。
  3. 所属分类:深度学习

    • 发布日期:2020-02-19
    • 文件大小:126kb
    • 提供者:weixin_42265567
  1. L7过拟合欠拟合及其解决方案.ipynb

  2. 2020 年参加伯禹教育pytorch培训-过拟合欠拟合及其解决方案知识单元 、 此为jupyter notebook格式源文件 文章见:https://blog.csdn.net/xiuyu1860/article/details/104313139
  3. 所属分类:深度学习

    • 发布日期:2020-02-14
    • 文件大小:43kb
    • 提供者:xiuyu1860
  1. 过拟合欠拟合及其解决方案 pytorch

  2. 过拟合、欠拟合及其解决方案,内容: 1. 过拟合、欠拟合的概念 2. 权重衰减 3. 丢弃法 总结 欠拟合现象:模型无法达到一个较低的误差 过拟合现象:训练误差较低但是泛化误差依然较高,二者相差较大
  3. 所属分类:机器学习

    • 发布日期:2020-02-13
    • 文件大小:12kb
    • 提供者:qq_40441895
  1. 过拟合问题解决方案视频讲解.wmv

  2. 过拟合问题解决方案视频讲解,希望能够学习者提供帮助,实现对过拟合问题知识的掌握与理解,为后续学习做好铺垫,实现过拟合问题的灵活运用
  3. 所属分类:深度学习

    • 发布日期:2020-02-06
    • 文件大小:21mb
    • 提供者:zsb8888
  1. 过拟合与模型选择

  2. BAT算法工程师深入详细地讲解过拟合与模型选择,带你轻松入门机器学习!
  3. 所属分类:机器学习

    • 发布日期:2019-07-03
    • 文件大小:132mb
    • 提供者:weixin_45246409
  1. 正则化_过拟合.docx

  2. 该文档包含了过拟合产生的原因,解决方法,以及为什么引入正则化,L1和L2的区别、L1为什么产生稀疏矩阵等等,欢迎下载
  3. 所属分类:机器学习

    • 发布日期:2019-05-24
    • 文件大小:112kb
    • 提供者:qq_24729325
  1. 机器学习-03. 梯度下降和过拟合和归一化(下)

  2. 人工智能基础视频教程零基础入门课程 第三章(下) 人工智能基础视频教程零基础入门课程,不需要编程基础即可学习,共15章,由于整体课程内容太大,无法一次传输,分章节上传。 第一章 人工智能开发及远景介绍(预科) 第二章 线性回归深入和代码实现 第三章 梯度下降和过拟合和归一化 第四章 逻辑回归详解和应用 第五章 分类器项目案例和神经网络算法 第六章 多分类、决策树分类、随机森林分类 第七章 分类评估、聚类 第八章 密度聚类、谱聚类 第九章 深度学习、TensorFlow安装和实现 第十章 Ten
  3. 所属分类:机器学习

    • 发布日期:2020-07-15
    • 文件大小:961mb
    • 提供者:suolong123
  1. 机器学习-03. 梯度下降和过拟合和归一化(上)

  2. 人工智能基础视频教程零基础入门课程 第三章(上) 人工智能基础视频教程零基础入门课程,不需要编程基础即可学习,共15章,由于整体课程内容太大,无法一次传输,分章节上传。 第一章 人工智能开发及远景介绍(预科) 第二章 线性回归深入和代码实现 第三章 梯度下降和过拟合和归一化 第四章 逻辑回归详解和应用 第五章 分类器项目案例和神经网络算法 第六章 多分类、决策树分类、随机森林分类 第七章 分类评估、聚类 第八章 密度聚类、谱聚类 第九章 深度学习、TensorFlow安装和实现 第十章 Ten
  3. 所属分类:机器学习

    • 发布日期:2020-07-15
    • 文件大小:768mb
    • 提供者:suolong123
  1. 神经网络中避免过拟合5种方法介绍

  2. 最近一年我一直致力于深度学习领域。这段时间里,我使用过很多神经网络,比如卷积神经网络、循环神经网络、自编码器等等。我遇到的最常见的一个问题就是在训练时,深度神经网络会过拟合。
  3. 所属分类:其它

    • 发布日期:2020-07-13
    • 文件大小:222kb
    • 提供者:weixin_38632247
  1. keras处理欠拟合和过拟合的实例讲解

  2. 主要介绍了keras处理欠拟合和过拟合的实例讲解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
  3. 所属分类:其它

    • 发布日期:2020-09-16
    • 文件大小:116kb
    • 提供者:weixin_38618521
  1. pytorch学习(十)——过拟合相关问题及解决方案

  2. 上传时间:2020/11/10 最后测试:2020/11/10 内容:pytroch解决过拟合相关问题及解决方案 其他:pytorch学习练习代码 相关介绍:https://blog.csdn.net/jerry_liufeng/article/details/109608811
  3. 所属分类:深度学习

    • 发布日期:2020-11-10
    • 文件大小:158kb
    • 提供者:jerry_liufeng
  1. tensorflow使用L2 regularization正则化修正overfitting过拟合方式

  2. L2正则化原理: 过拟合的原理:在loss下降,进行拟合的过程中(斜线),不同的batch数据样本造成红色曲线的波动大,图中低点也就是过拟合,得到的红线点低于真实的黑线,也就是泛化更差。 可见,要想减小过拟合,减小这个波动,减少w的数值就能办到。 L2正则化训练的原理:在Loss中加入(乘以系数λ的)参数w的平方和,这样训练过程中就会抑制w的值,w的(绝对)值小,模型复杂度低,曲线平滑,过拟合程度低(奥卡姆剃刀),参考公式如下图: (正则化是不阻碍你去拟合曲线的,并不是所有参数都会被无脑抑制
  3. 所属分类:其它

    • 发布日期:2020-12-17
    • 文件大小:98kb
    • 提供者:weixin_38556822
  1. 详解tensorflow之过拟合问题实战

  2. 过拟合问题实战 1.构建数据集 我们使用的数据集样本特性向量长度为 2,标签为 0 或 1,分别代表了 2 种类别。借助于 scikit-learn 库中提供的 make_moons 工具我们可以生成任意多数据的训练集。 import matplotlib.pyplot as plt # 导入数据集生成工具 import numpy as np import seaborn as sns from sklearn.datasets import make_moons from sklearn.
  3. 所属分类:其它

    • 发布日期:2020-12-16
    • 文件大小:691kb
    • 提供者:weixin_38737565
  1. 为什么正则化能够解决过拟合问题?

  2. 为什么正则化能够解决过拟合问题一. 正则化的解释二. 拉格朗日乘数法三. 正则化是怎么解决过拟合问题的1. 引出范数1.1 L_0范数1.2 L_1范数1.3 L_2范数2. L_2范式正则项如何解决过拟合问题2.1 公式推导2.2 图像推导[^2]2.2.1 L1正则化2.2.2 L2正则化四. 结论 如果觉得不想看前两大点,可以直接看第三点公式推导或图像观察,个人觉得特别好理解。 一. 正则化的解释 为防止模型过拟合,提高模型的泛化能力,通常会在损失函数的后面添加一个正则化项。 L1正则
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:258kb
    • 提供者:weixin_38604395
  1. AI之过拟合、欠拟合及其解决方案

  2. 过拟合、欠拟合及其解决方案模型选择、过拟合和欠拟合训练误差和泛化误差模型选择验证数据集K折交叉验证过拟合和欠拟合模型复杂度训练数据集大小多项式函数拟合实验初始化模型参数定义、训练和测试模型三阶多项式函数拟合(正常)线性函数拟合(欠拟合)训练样本不足(过拟合)权重衰减方法L2L_2L2​范数正则化(regularization)高维线性回归实验从零开始的实现初始化模型参数定义L2范数惩罚项定义训练和测试观察过拟合使用权重衰减简洁实现丢弃法丢弃法从零开始的实现简洁实现 模型选择、过拟合和欠拟合 训练
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:223kb
    • 提供者:weixin_38649657
  1. 过拟合欠拟合及其解决方案

  2. 过拟合欠拟合及其解决方案 模型在训练数据集上准确,测试数据集上不一定更准确 训练误差和泛化误差 训练误差:模型在训练数据集上表现出的误差。 泛化误差:模型在任意一个测试数据样本上表现出的误差的期望。常常通过测试数据集上的误差来近似。 一般情况下,由训练数据集学到的模型参数会使模型在训练数据集上的表现优于或等于在测试数据集上的表现。由于无法从训练误差估计泛化误差,一味地降低训练误差并不意味着泛化误差一定会降低。 模型选择 在机器学习中,通常需要评估若干候选模型的表现并从中选择模型。这一过程称为模型
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:82kb
    • 提供者:weixin_38594266
  1. Task03:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶

  2. Task03: 过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶 目录 Task03: 过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶 1、过拟合、欠拟合及其解决方案 1.1 训练误差和泛化误差 1.2 模型选择 1.3 过拟合和欠拟合 1.4 权重衰减 1.5 丢弃法 2、梯度消失、梯度爆炸 2.1 定义 2.2 随机初始化模型参数 2.3 考虑环境因素 3、循环神经网络进阶 3.1 门控循环单位(GRU) 3.2 长短期记忆(LSTM) 3.3 深度循环神经
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:695kb
    • 提供者:weixin_38575536
  1. pytorch_task3过拟合欠拟合;梯度消失爆炸;循环神经网络

  2. Task3过拟合、欠拟合及其解决方案训练误差、泛化误差模型选择验证数据集K折交叉验证过拟合欠拟合概念模型复杂度解决过拟合权重衰减(加上L2范数惩罚项)丢弃法梯度消失、梯度爆炸初始化模型参数Xavier随机初始化协变量偏移标签偏移概念偏移循环神经网络循环神经网络构造RNN简洁实现实践one-hot向量 过拟合、欠拟合及其解决方案 训练误差、泛化误差 前者指模型在训练数据集上表现出的误差。 后者指模型在任意一个测试数据样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似。 模型选择 验证数据
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:175kb
    • 提供者:weixin_38665629
  1. Datawhale&kesci&伯禹教育-深度学习-第二次打卡1 过拟合&欠拟合的解决方法

  2. 训练误差和泛化误差 训练误差: 在训练数据上表现得误差 泛化误差:在任意测试数据上表现的误差的期望 通过损失来衡量误差。例如,线性回归用平方损失函数,softma用的交叉熵回归。 模型的核心是降低泛化误差。 常见训练数据划分方法 1.留有一定比例的验证集 2. K折交叉验证 欠拟合(无法得到较低的误差)和过拟合(训练误差远小于测试误差) 产生的原因: 模型复杂度和训练数据 1.模型复杂度 2. 训练数据 一般来说训练数据随模型成正比例关系。 解决方法 : L2范数正则化 通过模型的计算误差来惩罚
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:111kb
    • 提供者:weixin_38744557
« 12 3 4 5 6 7 8 9 10 ... 31 »