您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 进阶网络神经.md pytorch

  2. 深度卷积神经网络(AlexNet) LeNet: 在大的真实数据集上的表现并不尽如⼈意。 1.神经网络计算复杂。 2.还没有⼤量深⼊研究参数初始化和⾮凸优化算法等诸多领域。 机器学习的特征提取:手工定义的特征提取函数 神经网络的特征提取:通过学习得到数据的多级表征,并逐级表⽰越来越抽象的概念或模式。 神经网络发展的限制:数据、硬件
  3. 所属分类:深度学习

    • 发布日期:2020-02-17
    • 文件大小:13kb
    • 提供者:qq_40441895
  1. Tensorflow卷积神经网络实例进阶

  2. 主要为大家详细介绍了Tensorflow卷积神经网络实例进阶,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
  3. 所属分类:其它

    • 发布日期:2020-09-20
    • 文件大小:93kb
    • 提供者:weixin_38563552
  1. Tensorflow卷积神经网络实例进阶

  2. 在Tensorflow卷积神经网络实例这篇博客中,我们实现了一个简单的卷积神经网络,没有复杂的Trick。接下来,我们将使用CIFAR-10数据集进行训练。 CIFAR-10是一个经典的数据集,包含60000张32*32的彩色图像,其中训练集50000张,测试集10000张。CIFAR-10如同其名字,一共标注为10类,每一类图片6000张。 本文实现了进阶的卷积神经网络来解决CIFAR-10分类问题,我们使用了一些新的技巧: 对weights进行了L2的正则化 对图片进行了翻转
  3. 所属分类:其它

    • 发布日期:2020-12-23
    • 文件大小:95kb
    • 提供者:weixin_38712578
  1. Task03:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶

  2. Task03: 过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶 目录 Task03: 过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶 1、过拟合、欠拟合及其解决方案 1.1 训练误差和泛化误差 1.2 模型选择 1.3 过拟合和欠拟合 1.4 权重衰减 1.5 丢弃法 2、梯度消失、梯度爆炸 2.1 定义 2.2 随机初始化模型参数 2.3 考虑环境因素 3、循环神经网络进阶 3.1 门控循环单位(GRU) 3.2 长短期记忆(LSTM) 3.3 深度循环神经
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:695kb
    • 提供者:weixin_38575536
  1. 《动手学深度学习——卷积神经网络、LeNet、卷积神经网络进阶》笔记

  2. 动手学深度学习:卷积神经网络,LeNet,卷积神经网络进阶 卷积神经网络基础 目录: 1、卷积神经网络的基础概念 2、卷积层和池化层 3、填充、步幅、输入通道和输出通道 4、卷积层的简洁实现 5、池化层的简洁实现 1、卷积神经网络的基础概念 最常见的二维卷积层,常用于处理图像数据。 二维互相关运算 二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:132kb
    • 提供者:weixin_38630571
  1. 小结5:卷积神经网络基础、LeNet、卷积神经网络进阶

  2. 文章目录卷积神经网络基础二维卷积层padding以及stride对特征图影响stridekernel参数LeNetLeNet结构图卷积神经网络进阶AlexNetVGGNiN(network in network)GoogleNet 卷积神经网络基础 本节我们介绍卷积神经网络的基础概念,主要是卷积层和池化层,并解释填充、步幅、输入通道和输出通道的含义。 二维卷积层 本节介绍的是最常见的二维卷积层,常用于处理图像数据。 二维互相关(cross-correlation)运算的输入是一个二维输入数组和一
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:562kb
    • 提供者:weixin_38628626
  1. 《动手学——循环神经网络进阶、梯度消失、梯度爆炸以及Kaggle房价预测、过拟合、欠拟合及其解决方案》笔记

  2. 《动手学——循环神经网络进阶》笔记 GRU 时间步数较大或者较小时,循环神经网络梯度较容易出现梯度衰减/梯度爆炸。 虽然裁剪梯度可以应对梯度爆炸,但没法解决梯度衰减问题。 所以提出⻔控循环神经⽹络GRU,来捕捉时间序列中时间步距离较⼤的依赖关系 RNN存在的问题:梯度较容易出现衰减或爆炸(BPTT) ⻔控循环神经⽹络:捕捉时间序列中时间步距离较⼤的依赖关系 RNN: Ht=ϕ(XtWxh+Ht−1Whh+bh) GRU: Rt=σ(XtWxr+Ht−1Whr+br) Zt=σ(XtWxz+Ht−
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:145kb
    • 提供者:weixin_38617602
  1. 小结3:过拟合欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶

  2. 文章目录过拟合、欠拟合及其解决方法过拟合问题(high variance)欠拟合问题(high bias)梯度消失及梯度爆炸循环网络进阶 过拟合、欠拟合及其解决方法 过拟合问题(high variance) 过拟合问题:是指模型太过复杂,对训练数据效果好,而对新样本泛化能力较弱。 (训练误差低 验证误差高) 产生过拟合的可能原因,可能为其中之一或者都有: 模型的复杂度过高。如网络太深,神经网络中;或者线性回归中模型的阶次 过多的变量特征 训练数据过少 如何解决过拟合: 降低模型复杂度 减少特征数
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:60kb
    • 提供者:weixin_38598745
  1. 《动手学习深度学习》之三:3.RNN循环神经网络(进阶)-4种模型(打卡2.6)

  2. RNN循环神经网络(进阶) 1.GRU(门控)模型 1.1.概念 1.1.1.RNN存在的问题:梯度较容易出现衰减或爆炸(BPTT) 1.1.2.GRU⻔控循环神经⽹络:捕捉时间序列中时间步距离较⼤的依赖关系 重置⻔有助于捕捉时间序列⾥短期的依赖关系; 更新⻔有助于捕捉时间序列⾥⻓期的依赖关系。 1.2.GRU模型从零实现 1.2.1.载入数据集 import numpy as np import torch from torch import nn, optim import torc
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:431kb
    • 提供者:weixin_38522214
  1. 进阶网络神经

  2. #目前GPU算力资源预计17日上线,在此之前本代码只能使用CPU运行。 #考虑到本代码中的模型过大,CPU训练较慢, #我们还将代码上传了一份到 https://www.kaggle.com/boyuai/boyu-d2l-modernconvolutionalnetwork #如希望提前使用gpu运行请至kaggle。 import time import torch from torch import nn, optim import torchvision import numpy as
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:403kb
    • 提供者:weixin_38698018
  1. Task03 循环神经网络进阶(pytorch代码实现)

  2. 循环神经网络进阶 ⻔控循环神经⽹络(GRU) 当时间步数较⼤或者时间步较小时, 循环神经⽹络的梯度较容易出现衰减或爆炸。虽然裁剪梯度可以应对梯度爆炸,但⽆法解决梯度衰减的问题。通常由于这个原因,循环神经⽹络在实际中较难捕捉时间序列中时间步距离较⼤的依赖关系。 ⻔控循环神经⽹络(GRU):捕捉时间序列中时间步距离较⼤的依赖关系 CNN: GRU: • 重置⻔有助于捕捉时间序列⾥短期的依赖关系; • 更新⻔有助于捕捉时间序列⾥⻓期的依赖关系。 GRU pytorch简洁代码实现 import n
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:209kb
    • 提供者:weixin_38664612
  1. 《动手学深度学习》Task03:过拟合、欠拟合及其解决方案+梯度消失、梯度爆炸+循环神经网络进阶

  2. 文章目录1 过拟合、欠拟合及其解决方案1.1 模型选择、过拟合和欠拟合1.2 过拟合和欠拟合1.3 权重衰减1.4 丢弃法2 梯度消失、梯度爆炸2.1 梯度消失和梯度爆炸2.2 考虑环境因素3 循环神经网络进阶3.1 GRU3.2 LSTM3.3 双向循环神经网络 文章目录 过拟合、欠拟合及其解决方案 梯度消失、梯度爆炸 循环神经网络进阶 1 过拟合、欠拟合及其解决方案 过拟合、欠拟合的概念 权重衰减 丢弃法 1.1 模型选择、过拟合和欠拟合 1.1.1 训练误差和泛
  3. 所属分类:其它

  1. 循环神经网络进阶

  2. 循环神经网络进阶 当时间步数较大或者时间步较小时,循环神经网络的梯度较容易出现衰减或爆炸。虽然裁剪梯度可以应对梯度爆炸,但无法解决梯度衰减的问题。通常由于这个原因,循环神经网络在实际中较难捕捉时间序列中时间步距离较大的依赖关系。 门控循环单元(GRU) 门控循环神经网络(gated recurrent neural network)的提出,正是为了更好地捕捉时间序列中时间步距离较大的依赖关系。它通过可以学习的门来控制信息的流动。其中,门控循环单元(gated recurrent unit,GRU
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:129kb
    • 提供者:weixin_38748555
  1. 《动手学深度学习》卷积神经网络基础;leNet;卷积神经网络进阶

  2. 卷积神经网络基础;leNet;卷积神经网络进阶卷积神经网络基础二位互相关运算二维卷积层互相关运算与卷积运算特征图与感受野填充和步幅填充:在输入的高宽两侧填充元素,通常填充0。步幅:卷积核在输入数组上每次滑动的行数列数。多输入通道和多输出通道1×11×11×1卷积层池化LeNetLeNet模型卷积神经网络进阶AlexNet使用重复元素的网络(VGG)网络中的网络(NIN)GoogleNet 卷积神经网络基础 介绍的是最常见的二维卷积层,常用于处理图像数据。 二位互相关运算 卷积核数组在输入数组上
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:504kb
    • 提供者:weixin_38522636
  1. 《动手学深度学习》task3——过拟合、欠拟合及解决方案,梯度消失、梯度爆炸,循环神经网络进阶笔记

  2. 系统学习《动手学深度学习》点击这里: 《动手学深度学习》task1_1 线性回归 《动手学深度学习》task1_2 Softmax与分类模型 《动手学深度学习》task1_3 多层感知机 《动手学深度学习》task2_1 文本预处理 《动手学深度学习》task2_2 语言模型 《动手学深度学习》task2_3 循环神经网络基础 《动手学深度学习》task3_1 过拟合、欠拟合及其解决方案 《动手学深度学习》task3_2 梯度消失、梯度爆炸 《动手学深度学习》task3_3 循环神经网络进阶 《
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:190kb
    • 提供者:weixin_38584058
  1. 动手学DL|Task5 LeNet+卷积神经网络进阶+循环神经网络进阶

  2. LeNet 笔记 使用全连接层的局限性: 图像在同一列邻近的像素在这个向量中可能相距较远。它们构成的模式可能难以被模型识别。 对于大尺寸的输入图像,使用全连接层容易导致模型过大。 使用卷积层的优势: 卷积层保留输入形状。 卷积层通过滑动窗口将同一卷积核与不同位置的输入重复计算,从而避免参数尺寸过大。 LeNet-5是Yann LeCun等人在多次研究后提出的最终卷积神经网络结构,一般LeNet即指代LeNet-5,是最早的卷积神经网络之一,并且推动了深度学习领域的发展。 LeNet-5包含七层,
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:869kb
    • 提供者:weixin_38646634
  1. 《动手学深度学习》Task05:卷积神经网络基础+LeNet+卷积神经网络进阶

  2. 文章目录1 卷积神经网络基础1.1 二维卷积层1.2 填充和步幅1.3 多输入通道和多输出通道1.4 卷积层与全连接层的对比1.4 池化2 LeNet2.1 LeNet 模型2.2 获取数据和训练模型3 卷积神经网络进阶3.1 深度卷积神经网络(AlexNet)3.2 使用重复元素的网络(VGG)3.3 网络中的网络(NiN)3.4 GoogLeNet 1 卷积神经网络基础 本节我们介绍卷积神经网络的基础概念,主要是卷积层和池化层,并解释填充、步幅、输入通道和输出通道的含义。 1.1 二维卷积层
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:651kb
    • 提供者:weixin_38672800
  1. 深度学习(三)————过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶

  2. 目录 过拟合、欠拟合及其解决方案 训练误差和泛化误差 过拟合和欠拟合的概念 模型复杂度和误差之间的关系 解决过拟合的方案 梯度消失及梯度爆炸 循环神经网络进阶 GRU LSTM 深度神经网络 过拟合、欠拟合及其解决方案 训练误差和泛化误差        在解释上述现象之前,我们需要区分训练误差(training error)和泛化误差(generalization error)。通俗来讲,前者指模型在训练数据集上表现出的误差,后者指模型在任意一个测试数据样本上表现出的误差的期望,并常常通过测试数
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:399kb
    • 提供者:weixin_38635092
  1. 《动手学习深度学习》之三:2.卷积神经网络(CNN)进阶-5种模型(打卡2.5)

  2. 卷积神经网络(CNN)进阶 2.LeNet、AlexNet、VGG、NiN、GooLeNet 5种模型 2.1.LeNet 2.1.1.全连接层和卷积层的比较: 使用全连接层的局限性: • 图像在同一列邻近的像素在这个向量中可能相距较远。它们构成的模式可能难以被模型识别。 • 对于大尺寸的输入图像,使用全连接层容易导致模型过大。 使用卷积层的优势: • 卷积层保留输入形状。 • 卷积层通过滑动窗口将同一卷积核与不同位置的输入重复计算,从而避免参数尺寸过大。 2.1.2.LeNet 模型介绍
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:732kb
    • 提供者:weixin_38648968
  1. 《动手学深度学习》Task04 :卷积神经网络基础;leNet;卷积神经网络进阶

  2. Task04 :卷积神经网络基础;leNet;卷积神经网络进阶 1.卷积神经网络基础 下面是一些卷积神经网络的基本概念: 二维互相关运算 二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小于输入数组,卷积核在输入数组上滑动,在每个位置上,卷积核与该位置处的输入子数组按元素相乘并求和,得到输出数组中相应位置的元素。图1展示了一个互相关运算的例子,阴影
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:865kb
    • 提供者:weixin_38567813
« 12 3 4 5 6 7 »