为了消除传统的遥感影像分类所带来的模糊性和不确定性,采用 B P神经网络进行遥感影像分类。利用 Matlab软件构建 B P网络遥感影像分类算法,通过对 B P网络算法进行改进,采用动量. 自适应学习速率调整算 法克服了网络训练速度慢、不易收敛到全局最优等缺点。对一幅全色遥感图像通过300次训练后,输出能真实反映地类的影像图,其分类总精度为86.67 %,Kappa系数为0.82,分类精度能够满足遥感图像分类的需要。
高光谱图像分类是遥感领域的研究热点之一,是对地观测的重要手段,在地物的精细识别等领域具有重要的应用。使用卷积神经网络(CNN)可以有效地从原始图像中提取高级特征,具有较高的分类精度。但CNN计算量巨大,对硬件要求较高。为了提高模型计算效率,可以在图形处理器(GPU)上进行CNN模型的训练。现有的并行算法,比如GCN(GPU based Cube-CNN),无法充分利用GPU的并行能力,算法加速效果并不理想。为了进一步提升算法效率,提出基于通用矩阵乘法(GEMM)算法的GGCN(GPU based