您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 阿塞拜疆-假新闻生成器:该项目的目的是使用LSTM递归神经网络以阿塞拜疆语言生成假新闻。 LSTM递归神经网络是功能强大的深度学习模型,用于学习序列数据。 在这里,LSTM模型接受了65,000个样本的训练,并且应该能够生成文本-源码

  2. 阿塞拜疆假新闻发生器 语言模型可以根据序列中已观察到的单词来预测序列中下一个单词的概率。 神经网络模型是开发统计语言模型的首选方法,因为它们可以使用分布式表示形式,其中具有相似含义的不同单词具有类似表示形式,并且因为它们在进行预测时可以使用最近观察到的单词的较大上下文。 该项目的目的是使用LSTM递归神经网络以阿塞拜疆语言生成假新闻。 LSTM递归神经网络是功能强大的深度学习模型,用于学习序列数据。 在该项目中,使用LSTM模型并对其进行了65 000个样本的训练,并且该模型应该能够生成文本。
  3. 所属分类:其它