点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - CS224n斯坦福深度自然语言处理课笔记Lecture03—高级词向量表示
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
CS224n 斯坦福深度自然语言处理课笔记 Lecture03—高级词向量表示
一、word2cev 1、回顾skip-grams word2vec的主要步骤是遍历整个语料库,利用每个窗口的中心词来预测上下文的单词,然后对每个这样的窗口利用SGD来进行参数的更新。 对于每一个窗口而言,我们只有2m+1个单词(其中m表示窗口的半径),因此我们计算出来的梯度向量是十分稀疏的。我们会在每个窗口更新损失函数。对于2dv的参数而言,我们只能更新一小部分。因此一个解决方法是提供一个单词到词向量的哈希映射。 2、负采样(negative sampling) 在word2vec的计算中有
所属分类:
其它
发布日期:2021-01-07
文件大小:3mb
提供者:
weixin_38690739