点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - Deep-SORT-YOLOv4:使用Tensorflow后端进行人员检测和可选的跟踪-源码
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
Deep-SORT-YOLOv4:使用Tensorflow后端进行人员检测和可选的跟踪-源码
介绍 该项目的灵感来自: 我将YOLO v3换成了YOLO v4,并添加了用于异步处理的选项,这大大提高了FPS。 但是,使用异步处理时FPS监视将被禁用,因为它不准确。 另外,我从提取了算法,并将其实现到deep_sort/track.py 。 用于确认轨迹的原始方法仅基于检测到对象的次数,而不考虑检测置信度,从而在发生不可靠的检测时(即低置信度真阳性或高置信度假阳性)导致高跟踪误报率。 轨道过滤算法通过在确认轨道之前计算一组检测次数的平均检测置信度,从而大大降低了这一点。 请参阅下面的
所属分类:
其它
发布日期:2021-02-06
文件大小:144mb
提供者:
weixin_42171208