点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - Diveintodeeplearningtask03-过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
Dive into deep learning task 03- 过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶
1. 过拟合 欠拟合 特征复杂,但是训练 样本数不足时,会产生过拟合,即训练误差小,但是在测试集上的测试误差比较大,即泛化能力强 解决的办法是增加样本数量 或用L2范数进行征罚。 增加样本数量的方法比较简单,但是费人费物。 L2的范数也叫权重衰减。 对绝对值 比较大的权重参数进行拟合,从而改善范化误差。 本质 上是将权重值 向较小值 的区别压缩。 另一种方法是dropout (丢弃法) 丢弃法不改变输入的期望,按一定的概率 丢弃隐藏层中的单元。 p为丢弃率, 1-p 为保存率 欠拟合不是太容易发
所属分类:
其它
发布日期:2021-01-07
文件大小:45kb
提供者:
weixin_38582793