您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 数据挖掘算法概要说明

  2. 数据挖掘、机器学习中各种常用模型的概念、算法汇总。内容包括:数据仓库、特征提取、模糊集、粗糙集、Fourier变换、小波变换、决策树、关联关则、kNN、聚类分析、朴素贝叶斯、EM、神经网络、遗传算法、支持向量机、隐Markov模型;提升模型、共同训练、主动学习、直推学习、广义EM算法、强化学习;学习机性能评估等。内容有一定的深度,不宜初学者。
  3. 所属分类:其它

    • 发布日期:2007-11-18
    • 文件大小:453kb
    • 提供者:yetzi1975
  1. Machine Learning 机器学习课件

  2. 很好的机器学习课件,全英文书写。包括EM、BP等经典算法。
  3. 所属分类:其它

    • 发布日期:2010-12-29
    • 文件大小:4mb
    • 提供者:wwwgeyang777
  1. 机器学习数学基础

  2. 大纲 • 涵盖由浅入深的一系列机器学习技术 • 将会学到: o PCA, MDS, K-mean, 基于频谱的聚类方法,贝叶斯分类,boosting, logistic回归,决策树,EM算法,隐马尔可夫模型,卡尔曼滤波…… • 讲述算法、理论、应用背后的故事 • 将会既有趣又辛苦 大纲 • 涵盖由浅入深的一系列机器学习技术 • 将会学到: o PCA, MDS, K-mean, 基于频谱的聚类方法,贝叶斯分类,boosting, logistic回归,决策树,EM算法,隐马尔可夫模型,卡尔曼滤
  3. 所属分类:专业指导

    • 发布日期:2013-06-13
    • 文件大小:3mb
    • 提供者:u011055553
  1. 斯坦福大学机器学习课程个人笔记完整版

  2. 斯坦福大学机器学习课程个人笔记完整版.pdf 目录 (1)线性回归、logistic回归和一般回归 1 (2)判别模型、生成模型与朴素贝叶斯方法 10 (3)支持向量机SVM(上) 20 (4)支持向量机SVM(下) 32 (5)规则化和模型选择 45 (6)K-means聚类算法 50 (7)混合高斯模型和EM算法 53 (8)EM算法 55 (9)在线学习 62 (10)主成分分析 65 (11)独立成分分析 80 (12)线性判别分析 91 (13)因子分析 103 (14)增强学习 1
  3. 所属分类:专业指导

    • 发布日期:2017-09-04
    • 文件大小:11mb
    • 提供者:gaifertrertre
  1. 斯坦福大学机器学习课程cs229原始讲义

  2. 这是斯坦福大学机器学习课程cs229原始讲义,Andrew Ng教授主讲。该讲义是PDF格式。涵盖了机器学习的主要算法:线性回归、logistic回归、一般回归、k-means、SVM、EM等。
  3. 所属分类:机器学习

    • 发布日期:2017-09-16
    • 文件大小:2mb
    • 提供者:qiaobot
  1. 斯坦福机器学习ML公开课笔记1-15(完整版、带目录索引和NG原版讲义)

  2. 1-15节全部完整版讲义!超清分享~~~(附赠目录索引和NG原版讲义) 含金量高,独家整理~~ 目录如下: 公开课笔记1-2——线性规划、梯度下降、正规方程组 公开课笔记3——局部加权回归、逻辑斯蒂回归、感知器算法 公开课笔记4——牛顿方法、指数分布族、广义线性模型 公开课笔记5——生成学习、高斯判别、朴素贝叶斯 公开课笔记6——NB多项式模型、神经网络、SVM初步 公开课笔记7——最优间隔分类、原始/对偶问题、SVM对偶 公开课笔记8———核技法、软间隔分类器、SMO算法 公开课笔记9—偏差
  3. 所属分类:机器学习

    • 发布日期:2017-11-07
    • 文件大小:8mb
    • 提供者:u012416259
  1. 机器学习综述

  2. 了解机器学习中的相关基本概念和常用方法 初步掌握极大似然估计、梯度下降法的一般性计算套路 熟悉最小二乘法的目标函数建立和解决方案 了解期望最大化算法(EM算法)的思路
  3. 所属分类:机器学习

    • 发布日期:2017-11-12
    • 文件大小:1mb
    • 提供者:gabriel1972
  1. BAT机器学习面试1000题系列

  2. BAT机器学习面试1000题系列 1 前言 1 BAT机器学习面试1000题系列 2 1 归一化为什么能提高梯度下降法求解最优解的速度? 22 2 归一化有可能提高精度 22 3 归一化的类型 23 1)线性归一化 23 2)标准差标准化 23 3)非线性归一化 23 35. 什么是熵。机器学习 ML基础 易 27 熵的引入 27 3.1 无偏原则 29 56. 什么是卷积。深度学习 DL基础 易 38 池化,简言之,即取区域平均或最大,如下图所示(图引自cs231n) 40 随机梯度下降 4
  3. 所属分类:机器学习

    • 发布日期:2018-03-07
    • 文件大小:10mb
    • 提供者:qq_38873863
  1. 机器学习文件

  2. 包括文本分析、时间序列分析.、回归算法、决策树与集成算法、聚类算法、贝叶斯算法、支持向量机、推荐系统、xgboost、LDA与PCA算法、EM算法、神经网络等有关机器学习的文件
  3. 所属分类:机器学习

    • 发布日期:2018-03-28
    • 文件大小:23mb
    • 提供者:qq_39214640
  1. 机器学习—EM算法及高斯混合模型PPT

  2. 用于学习极大似然估计,EM算法及高斯混合模型的课件PPT,包含几个案例和EM算法的数学推导
  3. 所属分类:专业指导

    • 发布日期:2018-04-02
    • 文件大小:2mb
    • 提供者:balffeavien
  1. 斯坦福Ng机器学习课程笔记(中文版)

  2. 【第1讲】 机器学习的动机与应用 【第2讲】 监督学习应用-线性回归 【第3讲】 线性回归的概率解释、局部加权回归、逻辑回归 【第4讲】 牛顿法、一般线性模型 【第5讲】 生成学习算法、高斯判别分析、朴素贝叶斯算法 【第6讲】 事件模型、函数间隔与几何间隔 【第7讲】 最优间隔分类器、拉格朗日对偶、支持向量机 【第8讲】 核方法、序列最小优化算法 【第9讲】 经验风险最小化 【第10讲】 交叉验证、特征选择 【第11讲】 贝叶斯统计、机器学习应用建议 【第12讲】 $k$-means算法、高斯
  3. 所属分类:讲义

    • 发布日期:2018-04-14
    • 文件大小:6mb
    • 提供者:difstone
  1. 【最新】2018面向工程师的最佳【统计机器学习】课程课件、作业、视频链接

  2. 美国圣母大学2017年新开课程《给科学家和工程师的统计学习》Statistical Computing for Scientists and Engineers 涵盖了统计学习中的几乎所有重要知识,包括《概率与统计、信息论、多维高斯分布、最大后验估计、贝叶斯统计、指数族分布、贝叶斯线性回归、蒙特卡洛方法、重要性采样、吉布斯采样、状态空间模型、EM算法、主成分分析、连续隐变量模型、核方法与高斯过程等》,并提供视频,PPT,课程作业及其参考答案与代码,还有大量参考学习资源,是不可多得的统计学习课程
  3. 所属分类:机器学习

    • 发布日期:2018-01-14
    • 文件大小:269byte
    • 提供者:zhuf14
  1. 经典的机器学习算法汇总(原理、实例及部分软件介绍)

  2. PageRank、SVM、决策树、K均值、KNN、朴素贝叶斯、Apriori、EM、AdaBoost、Cart等算法的原理、实例及部分可用软件的介绍
  3. 所属分类:机器学习

    • 发布日期:2018-01-18
    • 文件大小:3mb
    • 提供者:gis1226
  1. 机器学习总结

  2. 机器学习总结全:回归(线性回归、Logistic回归)、决策树与随机森林、SVM、最大熵和EM算法等
  3. 所属分类:机器学习

    • 发布日期:2018-11-01
    • 文件大小:23mb
    • 提供者:m0_43553676
  1. 机器学习视频(矩阵和线性代数教程)

  2. Python机器学习学习视频。包括基础库的调用以及机器学习算法教程。包括概率论、矩阵学习、回归、分类、决策树、XGB、SVM、聚类、EM、主题模型和HMM
  3. 所属分类:机器学习

    • 发布日期:2020-05-07
    • 文件大小:435mb
    • 提供者:qq_16669583
  1. 机器学习.xmind

  2. 西瓜书学习笔记,用Xmind做的记录,里面包括线性模型、神经网络、决策树、SVM、贝叶斯、EM、聚类、降维、半监督、强化等
  3. 所属分类:机器学习

    • 发布日期:2020-04-20
    • 文件大小:5mb
    • 提供者:qq_40545229
  1. 机器学习结课论文-期望最大化(EM).docx

  2. 期望最大化算法(Expectation-maximization algorithm)是机器学习中一个非常重要的算法,又称作 EM 算法。EM算法是由Dempster等人1977年提出的统计模型参数估计的一种算法。它采用的迭代交替搜索方式可以简单有效的求解最大似然函数估计问题。已知的概率模型内部存在隐含的变量,导致了不能直接用极大似然法来估计参数,EM算法就是通过迭代逼近的方式用实际的值带入求解模型内部参数的算法。它在当代的工业、商业和科学研究领域发挥了重要的作用。
  3. 所属分类:专业指导

    • 发布日期:2019-08-31
    • 文件大小:100kb
    • 提供者:qq_21685903
  1. 机器学习概念.pdf

  2. 介绍了机器学习中,监督学习、无监督学习、过拟合,以及采取相关的措施进行处理。6考虑下面样本特征为二维欧式空间点的两分类问题的训练集,分别用最近邻法和三近邻法给出测试样本点(1,1)的 类别 x0011122 1+ 2|+ 2 解:(1)计算距离 (x, y)Distance-(1, 1) (-1,1)Y(-1-12+(1-1)2)=2 (0,1)v(0-1)2+(1-1)^2)=1+ (02)(0-1y2+(2-1)^2)= (1,1)Y(1-1)2+(-1-1)^2)=2 (10)v(1-1)
  3. 所属分类:机器学习

    • 发布日期:2019-07-26
    • 文件大小:438kb
    • 提供者:qiu1440528444
  1. 斯坦福大学机器学习课程个人学习笔记.zip

  2. 吴恩达机器学习的笔记 非常好的机器学习资料 (Andrew Wu's notes on machine learning are excellent machine learning materials) 文件列表: (1)线性回归、logistic回归和一般回归.pdf (2)判别模型、生成模型与朴素贝叶斯方法.pdf (3)支持向量机SVM(上).pdf (4)支持向量机SVM(下).pdf (5)规则化和模型选择.pdf (6)K-means聚类算法.pdf (7)混合高斯模型和EM算法.
  3. 所属分类:机器学习

    • 发布日期:2019-07-07
    • 文件大小:5mb
    • 提供者:zhongrq88
  1. 清华大学-学堂在线-大数据机器学习课件笔记.zip

  2. 清华大学-学堂在线 大数据机器学习课件笔记系列:概述、机器学习的基本概念、模型性能评估、感知机、聚类、贝叶斯分类器及图模型、决策树和随机森林、逻辑斯谛回归与最大熵模型、支持向量机 SVM、核函数与非线性 SVM、降维与度量学习、提升方法 adaboost 算法、EM 算法及混合高斯模型、计算学习理论、隐马尔可夫模型和概率图模型、条件随机场、概率图模型的学习与推断、神经网络与深度学习、深度学习正则化方法、深度学习优化方法等。
  3. 所属分类:互联网

    • 发布日期:2020-05-29
    • 文件大小:50mb
    • 提供者:weixin_43595476
« 12 3 »