您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. Expectation-Maximization (EM)算法中文解释

  2. 详细介绍EM算法的原理与应用。Expectation-Maximization (EM) 算法是一个在含有隐含变量的模型中常用的算法,最常见的是用于高斯混合模型 (Mixtures of Gaussians)
  3. 所属分类:其它

    • 发布日期:2009-05-12
    • 文件大小:137kb
    • 提供者:koupeng
  1. EM算法Tutorial

  2. This tutorial discusses the Expectation Maximization (EM) algorithm of Demp- ster, Laird and Rubin [1]. The approach taken follows that of an unpublished note by Stuart Russel, but fleshes out some of the gory details.
  3. 所属分类:其它

    • 发布日期:2009-05-25
    • 文件大小:104kb
    • 提供者:knight_lxb
  1. A Gentle Tutorial of the EM Algorithm and its apllication to parameter estimation for Gaussian Mixture and Hidden Markov

  2. We describe the maximum-likelihood parameter estimation problem and how the Expectation- Maximization (EM) algorithm can be used for its solution. We first describe the abstract form of the EM algorithm as it is often given in the literature. We the
  3. 所属分类:其它

    • 发布日期:2009-07-13
    • 文件大小:166kb
    • 提供者:kidstory
  1. 七篇论文(基于多描述的联合信源信道编码,DISTRIBUTED IMAGE COMPRESSION FOR SENSOR NETWORKS USING CORRESPONDENCE ANALYSIS AND SUPER-RESOLUTION

  2. 一共七篇,目录如下 Distributed Arithmetic Coding for the Slepian–Wolf Problem DISTRIBUTED IMAGE COMPRESSION FOR SENSOR NETWORKS USING CORRESPONDENCE ANALYSIS AND SUPER-RESOLUTION LOCALIZATION OF TAMPERING IN CONTRAST AND BRIGHTNESS ADJUSTED IMAGES USING DIST
  3. 所属分类:其它

    • 发布日期:2009-08-10
    • 文件大小:2mb
    • 提供者:nieshen
  1. EM算法简介--作者:尤全增

  2. EM(expectation-maximization)算法是Dempster,Laird和Rubin(DLR)三个人在1977年正式提出的.主要是用于在不完全数据的情况下计算最大似然估计。ppt中包含以下内容: 算法介绍 EM算法 GEM算法性质 EM算法解释 EM不足及改进 作者:尤全增 ultimateyou@gmail.com
  3. 所属分类:其它

    • 发布日期:2009-12-20
    • 文件大小:520kb
    • 提供者:infocarrier
  1. Expectation_Maximization

  2. This is a matlab file, it implements the expectation maximization(EM) method, which can fit a mixture Gaussian distribution
  3. 所属分类:其它

    • 发布日期:2010-07-12
    • 文件大小:2kb
    • 提供者:jjcoding
  1. Introduction to Semi-Supervised Learning - Xiaojin Zhu, Andrew B. Goldberg(2009)

  2. Synthesis Lectures on Artificial Intelligence and Machine Learning 【keywords】semi-supervised learning, transductive learning, self-training,Gaussianmixturemodel, expectation maximization (EM), cluster-then-label, co-training, multiview learning, minc
  3. 所属分类:硬件开发

    • 发布日期:2010-07-22
    • 文件大小:1mb
    • 提供者:stc1984
  1. AI EM 算法 Expectation-maximization algorithm

  2. 关于 AI 的一些算法 !! Expectation-maximization algorithm
  3. 所属分类:其它

    • 发布日期:2010-10-18
    • 文件大小:15kb
    • 提供者:coogerhui
  1. k-means clustering 算法 用于机器学习和模式识别

  2. k-means clustering,聚类,用于机器学习和模式识别。 下面是英文介绍:In statistics and machine learning, k-means clustering is a method of cluster analysis which aims to partition n observations into k clusters in which each observation belongs to the cluster with the neares
  3. 所属分类:其它

    • 发布日期:2011-02-01
    • 文件大小:2kb
    • 提供者:welcome_andy
  1. MIMO_OFDM系统中基于变分贝叶斯EM算法的联合符号检测与信道估计

  2. 基于变分贝叶斯期望最大化(VBEM,variational Bayes expectation maximization)算法和Turbo原理,提 出了时变信道条件下MIMO-OFDM系统中的联合符号检测与信道估计算法。设计的软入软出空时检测器在采用 列表球形译码避免穷尽搜索的同时,考虑了信道估计误差方差矩阵的影响;利用空时检测获得的发送信号后验概率 分布估计,推出了新的Kalman前向后向递归信道估计器。仿真结果表明,在时变多径信道条件下,提出的算法 比传统EM算法和面向判决算法更加具有顽健
  3. 所属分类:其它

    • 发布日期:2011-03-02
    • 文件大小:1mb
    • 提供者:janicetuantuan
  1. Data-Intensive Text Processing with MapReduce

  2. Data-Intensive Text Processing with MapReduce, Jimmy Lin and Chris Dyer University of Maryland, College Park Manuscr ipt prepared April 11, 2010 ii Introduction 1 1.1 Computing in the Clouds 1.2 Big Ideas 1.3 Why Is This Different? 1.4 What This Boo
  3. 所属分类:其它

    • 发布日期:2011-03-27
    • 文件大小:1mb
    • 提供者:q255cs
  1. EM algorithm for Gaussian Mixture Model

  2. EM算法的高斯混合模型参数估计:Descr iption This is a function performs maximum likelihood estimation of Gaussian mixture model by using expectation maximization algorithm. It can work on data of arbitrary dimensions. Several techniques are applied in order to avo
  3. 所属分类:其它

    • 发布日期:2011-05-30
    • 文件大小:20kb
    • 提供者:facny_wang
  1. Clustering Toolbox

  2. matlab的分群工具箱 包括agglom(Basic Agglomerative Clustering)、 kmeans(k-means clustering )、mixtureEM(cluster by estimating a mixture of Gaussians)、mixtureSelect(estimate a mixture with unknown K using BIC)、EM(Expectation-Maximization) 以及相关的Demo和C程序
  3. 所属分类:教育

    • 发布日期:2011-07-29
    • 文件大小:24kb
    • 提供者:michael_zyf
  1. EM算法讲解

  2. EM算法介绍,英文的!We describe the maximum-likelihood parameter estimation problem and how the Expectation- Maximization (EM) algorithm can be used for its solution. We first describe the abstract form of the EM algorithm as it is often given in the literat
  3. 所属分类:专业指导

    • 发布日期:2011-10-31
    • 文件大小:283kb
    • 提供者:amoaxm
  1. 混合高斯模型以及EM(Expectation Maximization)算法

  2. PRML读书会第九章 Mixture Models and EM(Kmeans;混合高斯模型以及EM(Expectation Maximization)算法;一般EM算法性质的推导和证明
  3. 所属分类:机器学习

    • 发布日期:2018-03-29
    • 文件大小:1mb
    • 提供者:u011161384
  1. EM算法(Expectation Maximization)

  2. 资料内有 EM算法(Expectation Maximization)的详细原理讲解和代码讲解
  3. 所属分类:机器学习

    • 发布日期:2018-07-10
    • 文件大小:5mb
    • 提供者:happyygdx
  1. Algorithm-expectation-maximization.zip

  2. Algorithm-expectation-maximization.zip,期望最大化算法的实现,算法是为计算机程序高效、彻底地完成任务而创建的一组详细的准则。
  3. 所属分类:其它

  1. Image fusion based on expectation maximization algorithm and steerable pyramid

  2. In this paper, a novel image fusion method based on the expectation maximization (EM) algorithm and steerable pyramid is proposed. The registered images are first decomposed by using steerable pyramid. The EM algorithm is used to fuse the image compo
  3. 所属分类:其它

    • 发布日期:2021-02-27
    • 文件大小:552kb
    • 提供者:weixin_38681147
  1. Evolutionary tree reconstruction using structural expectation maximization and homotopy

  2. The evolutionary tree reconstruction algorithm called SEMPHY using structural expectation maximization (SEM) is an efficient approach but has local optimality problem. To improve SEMPHY, a new algorithm named HSEMPHY based on the homotopy continuatio
  3. 所属分类:其它

    • 发布日期:2021-02-20
    • 文件大小:546kb
    • 提供者:weixin_38659805
  1. A survey on joint tracking using expectation-maximization based techniques

  2. A survey on joint tracking using expectation-maximization based techniques
  3. 所属分类:其它

« 12 3 »