您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. Numpy实现卷积神经网络(CNN)的示例

  2. import numpy as np import sys def conv_(img, conv_filter): filter_size = conv_filter.shape[1] result = np.zeros((img.shape)) # 循环遍历图像以应用卷积运算 for r in np.uint16(np.arange(filter_size/2.0, img.shape[0]-filter_size/2.0+1)): for c in np.uint1
  3. 所属分类:其它

    • 发布日期:2020-12-16
    • 文件大小:53kb
    • 提供者:weixin_38710566
  1. CNN-Numpy-Implementation:手动实现卷积神经网络,而无需使用诸如pytorch和tensorflow之类的现代库-源码

  2. CNN-Numpy-实施 手动实现卷积神经网络,而无需使用诸如pytorch和tensorflow之类的现代库。 换句话说,我从头开始构建了一个神经网络,其中涉及实现正向和反向传播。 我手动编写了反向传播代码,并使用numpy手动实现了每一层的偏导数。 我在这里使用的方程式示例可以在这里找到。 E.Bendersky(2016年10月28日)。 Softmax函数及其导数。 取自 我最完善,最成功的网络是跟踪多个功能的多元回归CNN。 它可以正确确定两个图像之间的形状数量差异以及是否存在反射
  3. 所属分类:其它

    • 发布日期:2021-02-22
    • 文件大小:307mb
    • 提供者:weixin_42099936