您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. MachineLearning-master-python.zip

  2. 属于网络下载资源,感谢原作者的贡献。 ##目录介绍 - **DeepLearning Tutorials** 这个文件夹下包含一些深度学习算法的实现代码,以及具体的应用实例,包含: Keras使用进阶。介绍了怎么保存训练好的CNN模型,怎么将CNN用作特征提取,怎么可视化卷积图。 [keras_usage]介绍了一个简单易用的深度学习框架keras,用经典的Mnist分类问题对该框架的使用进行说明,训练一个CNN,总共不超过30行代码。 将卷积神经网络CNN应用于人脸识别的一个demo,人脸数
  3. 所属分类:专业指导

    • 发布日期:2016-07-04
    • 文件大小:1mb
    • 提供者:qq_33042687
  1. Python使用三种方法实现PCA算法

  2. 主要介绍了Python使用三种方法实现PCA算法,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
  3. 所属分类:其它

    • 发布日期:2020-09-21
    • 文件大小:83kb
    • 提供者:weixin_38691453
  1. h2o-3:H2O是一个开源,分布式,快速且可扩展的机器学习平台:深度学习,梯度提升(GBM)和XGBoost,随机森林,广义线性建模(带有弹性网的GLM),K均值,PCA,广义附加模型(GAM),RuleFit,支持向量机(SVM),堆叠

  2. 水 H2O是用于分布式,可扩展的机器学习的内存平台。 H2O使用熟悉的界面(例如R,Python,Scala,Java,JSON和Flow笔记本/网络界面),并与Hadoop和Spark等大数据技术无缝协作。 H2O提供了许多流行实现,例如广义线性模型(GLM),梯度提升机(包括XGBoost),随机森林,深层神经网络,堆叠体,朴素贝叶斯,广义加性模型(GAM),考克斯比例危害,K-表示PCA,Word2Vec以及全自动机器学习算法( )。 H2O是可扩展的,因此开发人员可以添加自己选择的
  3. 所属分类:其它

    • 发布日期:2021-02-03
    • 文件大小:88mb
    • 提供者:weixin_42126668
  1. Python使用三种方法实现PCA算法

  2. 主成分分析,即Principal Component Analysis(PCA),是多元统计中的重要内容,也广泛应用于机器学习和其它领域。它的主要作用是对高维数据进行降维。PCA把原先的n个特征用数目更少的k个特征取代,新特征是旧特征的线性组合,这些线性组合最大化样本方差,尽量使新的k个特征互不相关。关于PCA的更多介绍,请参考:https://en.wikipedia.org/wiki/Principal_component_analysis. 主成分分析(PCA) vs 多元判别式分析(MD
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:83kb
    • 提供者:weixin_38597970