您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. Pytorch 实现自定义参数层的例子

  2. 今天小编就为大家发信息一篇Pytorch 实现自定义参数层的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
  3. 所属分类:其它

    • 发布日期:2020-09-18
    • 文件大小:29kb
    • 提供者:weixin_38720978
  1. Pytorch 实现自定义参数层的例子

  2. 注意,一般官方接口都带有可导功能,如果你实现的层不具有可导功能,就需要自己实现梯度的反向传递。 官方Linear层: class Linear(Module): def __init__(self, in_features, out_features, bias=True): super(Linear, self).__init__() self.in_features = in_features self.out_features = out_features
  3. 所属分类:其它

    • 发布日期:2021-01-01
    • 文件大小:34kb
    • 提供者:weixin_38697444
  1. 分层dnn解释:使用论文《神经网络预测的分层解释》中的复制ACD(ICLR 2019)-源码

  2. 从神经网络预测的层次解释论文中使用/复制ACD的官方代码(ICLR 2019 )。 该代码为神经网络所做的单个预测生成层次解释。 注意:此存储库正在积极维护。 如有任何疑问,请提出问题。 例子/文档 安装: pip install acd (或克隆并运行python setup.py install ) 示例: 文件夹包含带有许多演示的笔记本 api : 提供可用功能列表 src : 文件夹包含方法实现的源 通过更改超参数允许进行不同类型的解释(在示例中进行了说明) 使用python3和
  3. 所属分类:其它

    • 发布日期:2021-02-03
    • 文件大小:23mb
    • 提供者:weixin_42140846