您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. Pytorch 实现sobel算子的卷积操作详解

  2. 今天小编就为大家分享一篇Pytorch 实现sobel算子的卷积操作详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
  3. 所属分类:其它

    • 发布日期:2020-09-18
    • 文件大小:98kb
    • 提供者:weixin_38666232
  1. Pytorch 实现sobel算子的卷积操作详解

  2. 卷积在pytorch中有两种实现,一种是torch.nn.Conv2d(),一种是torch.nn.functional.conv2d(),这两种方式本质都是执行卷积操作,对输入的要求也是一样的,首先需要输入的是一个torch.autograd.Variable()的类型,大小是(batch,channel, H,W),其中batch表示输入的一批数据的数目,channel表示输入的通道数。 一般一张彩色的图片是3,灰度图片是1,而卷积网络过程中的通道数比较大,会出现几十到几百的通道数。H和W表
  3. 所属分类:其它

    • 发布日期:2020-12-23
    • 文件大小:100kb
    • 提供者:weixin_38688371