点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - Task03
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
task03-特征工程.md
特征工程主要进行以下一些操作: 1.导入数据 2.删除异常值:截断过大或过小值的数据 3.特征构造: - 广告发布时间:将年、月、日信息单列出来 - 汽车使用时间=广告时间-注册时间 - 城市信息=邮政编码后三位 - 销售统计量:比如价格的最大最小值、中位数、均值、方差等 4.数据分桶:对功率等数值型变量分桶 5.特征筛选:通过相关系数找出对结果影响较大的变量
所属分类:
机器学习
发布日期:2020-03-28
文件大小:20kb
提供者:
lukem44
刻意练习:LeetCode实战 — Task03. 移除元素
背景 本篇图文是LSGO软件技术团队组织的 第二期基础算法(Leetcode)刻意练习训练营 的打卡任务。本期训练营采用分类别练习的模式,即选择了五个知识点(数组、链表、字符串、树、贪心算法),每个知识点选择了 三个简单、两个中等、一个困难 等级的题目,共计三十道题,利用三十天的时间完成这组刻意练习。 本次任务的知识点:数组 数组 是在程序设计中,为了处理方便,把具有相同类型的若干元素按有序的形式组织起来的一种形式。抽象地讲,数组即是有限个类型相同的元素的有序序列。若将此序列命名,那么这个名称即
所属分类:
其它
发布日期:2020-12-22
文件大小:120kb
提供者:
weixin_38673237
打卡第三天(Task03)—-移除元素
Leetcode刻意练习—-数组3 题目 给定一个数组 nums 和一个值 val,你需要原地移除所有数值等于val 的元素,返回移除后数组的新长度。不要使用额外的数组空间,你必须在原地修改输入数组并在使用 O(1) 额外空间的条件下完成。元素的顺序可以改变。你不需要考虑数组中超出新长度后面的元素。 示例 1 给定 nums = [3,2,2,3], val = 3, 函数应该返回新的长度 2, 并且 nums 中的前两个元素均为 2。 你不需要考虑数组中超出新长度后面的元素。 示例 2 给定
所属分类:
其它
发布日期:2020-12-22
文件大小:57kb
提供者:
weixin_38632488
动手学深度学习02–task03
填充和步幅 我们介绍卷积层的两个超参数,即填充和步幅,它们可以对给定形状的输入和卷积核改变输出形状。 填充 填充(padding)是指在输入高和宽的两侧填充元素(通常是0元素),图2里我们在原输入高和宽的两侧分别添加了值为0的元素。 图2 在输入的高和宽两侧分别填充了0元素的二维互相关计算 如果原输入的高和宽是nhn_hnh和nwn_wnw,卷积核的高和宽是khk_hkh和kwk_wkw,在高的两侧一共填充php_hph行,在宽的两侧一共填充pwp_wpw列,则输出形状为: (nh
所属分类:
其它
发布日期:2021-01-07
文件大小:397kb
提供者:
weixin_38685694
动手学深度学习Task03-Task05
过拟合、欠拟合及其解决方案 过拟合和欠拟合 一类是模型无法得到较低的训练误差,我们将这一现象称作欠拟合(underfitting); 另一类是模型的训练误差远小于它在测试数据集上的误差,我们称该现象为过拟合(overfitting)。 L2 范数正则化(regularization) L2 范数正则化在模型原损失函数基础上添加L2范数惩罚项,从而得到训练所需要最小化的函数。L2范数惩罚项指的是模型权重参数每个元素的平方和与一个正的常数的乘积。以线性回归中的线性回归损失函数为例 其中 w1,w
所属分类:
其它
发布日期:2021-01-07
文件大小:821kb
提供者:
weixin_38685882
Task03:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶
Task03: 过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶 目录 Task03: 过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶 1、过拟合、欠拟合及其解决方案 1.1 训练误差和泛化误差 1.2 模型选择 1.3 过拟合和欠拟合 1.4 权重衰减 1.5 丢弃法 2、梯度消失、梯度爆炸 2.1 定义 2.2 随机初始化模型参数 2.3 考虑环境因素 3、循环神经网络进阶 3.1 门控循环单位(GRU) 3.2 长短期记忆(LSTM) 3.3 深度循环神经
所属分类:
其它
发布日期:2021-01-07
文件大小:695kb
提供者:
weixin_38575536
动手学深度学习 Task03 过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶
【一】过拟合、欠拟合及其解决方案 过拟合 模型的训练误差远小于它在测试数据集上的误差,我们称该现象为过拟合(overfitting)。 欠拟合 当模型无法得到较低的训练误差时,我们将这一现象称作欠拟合(underfitting)。 在实践中,我们要尽可能同时应对欠拟合和过拟合。虽然有很多因素可能导致这两种拟合问题,在这里重点讨论两个因素: 模型复杂度和训练数据集大小。 1.模型复杂度 为了解释模型复杂度,我们以多项式函数拟合为例。给定一个由标量数据特征 x 和对应的标量标签 y 组成的训练数据集
所属分类:
其它
发布日期:2021-01-07
文件大小:265kb
提供者:
weixin_38647517
【DL学习笔记】打卡02:Task03-05
Task03:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶 Task04:机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer Task05:卷积神经网络基础;leNet;卷积神经网络进阶 过拟合、欠拟合及其解决方案 一类是模型无法得到较低的训练误差,我们将这一现象称作欠拟合(underfitting); 另一类是模型的训练误差远小于它在测试数据集上的误差,我们称该现象为过拟合(overfitting)。 在实践中,我们要尽可能同时应对欠拟合和过拟合。虽
所属分类:
其它
发布日期:2021-01-07
文件大小:69kb
提供者:
weixin_38508497
Task03、Task04、Task05
本文意在于记录短期学习中同僚总结的知识点,主要学习平台在伯禹https://www.boyuai.com/elites/course/cZu18YmweLv10OeV Task03:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶(1天) Task04:机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer(1天) Task05:卷积神经网络基础;leNet;卷积神经网络进阶(1天) Task03:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进
所属分类:
其它
发布日期:2021-01-06
文件大小:115kb
提供者:
weixin_38571878
Task03-05
梯度消失 协变量偏移:真人版电影vs动漫 标签偏移:真假美猴王 概念偏移:病毒的进化,人类的进化。认知迟延,知识需要更新。 e.g.1一个在冬季部署的物品推荐系统在夏季的物品推荐列表中出现了圣诞礼物,我们可以推断该系统没有考虑到: A协变量偏移 B标签偏移 C概念偏移 D没有问题 答案解析:A 可以理解为在夏季的物品推荐系统与冬季相比,时间或者说季节发生了变化,导致了夏季推荐圣诞礼物的不合理的现象,这个现象是由于协变量时间发生了变化造成的。 在深层网络中尽量避免选择sigmoid和tanh激
所属分类:
其它
发布日期:2021-01-06
文件大小:58kb
提供者:
weixin_38630091
伯禹AI – task03 过拟合、欠拟合及其解决方案 -梯度消失与爆炸、循环神经网络进阶
在介绍以上概念之前要理解 训练集、测试集与验证集的区分: 从严格意义上讲,测试集只能在所有超参数和模型参数选定后使用一次。不可以使用测试数据选择模型,如调参。由于无法从训练误差估计泛化误差,因此也不应只依赖训练数据选择模型。鉴于此,我们可以预留一部分在训练数据集和测试数据集以外的数据来进行模型选择。这部分数据被称为验证数据集,简称验证集(validation set)。例如,我们可以从给定的训练集中随机选取一小部分作为验证集,而将剩余部分作为真正的训练集。 训练误差(traini
所属分类:
其它
发布日期:2021-01-06
文件大小:254kb
提供者:
weixin_38608189
Task03:过拟合、欠拟合及其解决方案/梯度消失、梯度爆炸/循环神经网络进阶
1 过拟合、欠拟合及其解决方案 训练误差和泛化误差 在解释上述现象之前,我们需要区分训练误差(training error)和泛化误差(generalization error)。通俗来讲,前者指模型在训练数据集上表现出的误差,后者指模型在任意一个测试数据样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似。计算训练误差和泛化误差可以使用之前介绍过的损失函数,例如线性回归用到的平方损失函数和softmax回归用到的交叉熵损失函数。 机器学习模型应关注降低泛化误差。 模型选择 验证数据集
所属分类:
其它
发布日期:2021-01-06
文件大小:753kb
提供者:
weixin_38722891
动手学习深度学习—Task03
文章目录文本预处理读入文本分词建立字典将词转化为索引语言模型读取数据集建立字符索引时序数据的采样随机采样相邻采样RNN从零实现RNN 文本预处理 读入文本 import collections import re def read_time_machine(): with open('/home/kesci/input/timemachine7163/timemachine.txt', 'r') as f: # strip():移除字符串头尾的空字符 #
所属分类:
其它
发布日期:2021-01-06
文件大小:118kb
提供者:
weixin_38644097
Task03:过拟合、欠拟合及其解决方案学习笔记
过拟合、欠拟合及其解决方案 过拟合、欠拟合的概念 权重衰减 丢弃法 模型选择、过拟合和欠拟合 训练误差和泛化误差 在解释上述现象之前,我们需要区分训练误差(training error)和泛化误差(generalization error)。通俗来讲,前者指模型在训练数据集上表现出的误差,后者指模型在任意一个测试数据样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似。计算训练误差和泛化误差可以使用之前介绍过的损失函数,例如线性回归用到的平方损失函数和softmax回归用到的交叉熵损失函
所属分类:
其它
发布日期:2021-01-06
文件大小:106kb
提供者:
weixin_38727199
【动手学深度学习】Task03笔记汇总
Task03:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶 过拟合、欠拟合及其解决方案 第一反应是训练数据集大小带来的影响,或许有很多研究怎么丰富数据集的文献吧,数据集大,那么复杂的模型就更好发挥作用。 1.过拟合常用的模型层面的应对方法: 权重衰减,也即L2-Norm Regularization。从公式和名字易见,该方法加入了对权重系数的2范数作为惩罚项从而学习到数值较小的参数。(那么自然而然会产生的问题就是:为什么不对偏置做正则化,这个可以去实验一下,应该会发现偏置没有
所属分类:
其它
发布日期:2021-01-06
文件大小:103kb
提供者:
weixin_38735987
动手学 task03 过拟合、欠拟合及其解决方案+梯度消失、梯度爆炸+循环神经网络进阶
过拟合、欠拟合及其解决方案 过拟合和欠拟合 一类是模型无法得到较低的训练误差,我们将这一现象称作欠拟合(underfitting); 另一类是模型的训练误差远小于它在测试数据集上的误差,我们称该现象为过拟合(overfitting)。 在实践中,我们要尽可能同时应对欠拟合和过拟合。虽然有很多因素可能导致这两种拟合问题,在这里我们重点讨论两个因素:模型复杂度和训练数据集大小。 模型复杂度与过拟合、欠拟合的关系如下图: 训练数据集大小: 影响欠拟合和过拟合的另一个重要因素是训练数据集的大小。一般来
所属分类:
其它
发布日期:2021-01-06
文件大小:50kb
提供者:
weixin_38749305
ElitesAI·动手学深度学习PyTorch版Task03打卡
Task3打卡 1、过拟合、欠拟合及其解决方案 目录: 相关的基本概念 权重衰减 过拟合、欠拟合解决方法 1、相关的基本概念 训练误差: 模型在训练数据集上表现出的误差。 泛化误差: 模型在任意一个测试数据样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似。 欠拟合(underfitting): 模型无法得到较低的训练误差。 过拟合(overfitting): 模型的训练误差远小于它在测试数据集上的误差。 注:在实践中,我们要尽可能同时应对欠拟合和过拟合。虽然有很多因素可能导致这两种拟
所属分类:
其它
发布日期:2021-01-06
文件大小:432kb
提供者:
weixin_38641876
ElitesAI·动手学深度学习PyTorch版-第二次打卡task03
1、卷积神经网络基础: 1.1 二维卷积操作: 二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小于输入数组,卷积核在输入数组上滑动,在每个位置上,卷积核与该位置处的输入子数组按元素相乘并求和,得到输出数组中相应位置的元素。图1展示了一个互相关运算的例子,阴影部分分别是输入的第一个计算区域、核数组以及对应的输出。 其中。卷积核为2:heavy_m
所属分类:
其它
发布日期:2021-01-06
文件大小:923kb
提供者:
weixin_38718262
动手学深度学习Task03
Task03 1.过拟合欠拟合及其解决方案 训练误差(training error):模型在训练数据集上表现出的误差。 泛化误差(generalization error):模型在任意一个测试数据样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似。 机器学习模型应关注降低泛化误差。 通常需要预留一部分在训练数据集和测试数据集以外的数据来进行模型选择,这部分数据被称为验证数据集,简称验证集(validation set)。 K折交叉验证:把原始训练数据集分割成K个不重合的子数据集,然后我
所属分类:
其它
发布日期:2021-01-06
文件大小:304kb
提供者:
weixin_38605538
JWD-Task03-源码
JWD-Task03
所属分类:
其它
发布日期:2021-02-20
文件大小:10kb
提供者:
weixin_42139042
«
1
2
3
»