您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. ID3,C4.5,Python

  2. 用python实现ID3,C4.5算法。基于决策树的数据挖掘算法。
  3. 所属分类:Python

    • 发布日期:2016-01-07
    • 文件大小:418kb
    • 提供者:sinat_15104757
  1. 决策树算法python代码实现

  2. 决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。Entropy = 系统的凌乱程度,使用算法ID3, C4.5和C5.0生成树算法使用熵。这一度量是基于信息学理论中熵的概念。 决策树是一种树形结构,其中每个内部节点
  3. 所属分类:机器学习

    • 发布日期:2018-06-01
    • 文件大小:4kb
    • 提供者:u010919410
  1. Python实现决策树

  2. 决策树的三种数据挖掘算法,使用了python实现可视化。
  3. 所属分类:Hadoop

    • 发布日期:2018-06-30
    • 文件大小:454kb
    • 提供者:csdnwxhw
  1. sklearn0.19中文文档

  2. sklearn0.19中文文档 PDF格式高清。 .1. 广义线性模型 1.1.1. 普通最小二乘法 1.1.1.1. 普通最小二乘法复杂度 1.1.2. 岭回归 1.1.2.1. 岭回归的复杂度 1.1.2.2. 设置正则化参数:广义交叉验证 1.1.3. Lasso 1.1.3.1. 设置正则化参数 1.1.3.1.1. 使用交叉验证 1.1.3.1.2. 基于信息标准的模型选择 1.1.3.1.3. 与 SVM 的正则化参数的比较 1.1.4. 多任务 Lasso 1.1.5. 弹性网络
  3. 所属分类:机器学习

    • 发布日期:2018-10-30
    • 文件大小:14mb
    • 提供者:hardpen2013
  1. C4.5决策树算法的Python代码和数据样本

  2. 资源中包含完整的C4.5决策树算法Python代码和测试数据,其中有4个文件:C45.py是算法的实现代码,treePlotter.py是绘制决策树代码,PlayData.txt是样本数据,C45test.py用来构建、绘制并测试决策树,您可以运行该文件来依次进行决策树的构建、剪枝、绘制树型图,并对测试样本进行分类。
  3. 所属分类:机器学习

    • 发布日期:2018-12-21
    • 文件大小:7kb
    • 提供者:leaf_zizi
  1. 决策树用Python实现.rar

  2. 使用Python写决策树算法(c4.5决策树),包括代码和源数据。代码量少,并且写好注释,清晰易懂。但是调了许多包没有用上,可适当删改。
  3. 所属分类:互联网

    • 发布日期:2020-04-25
    • 文件大小:33kb
    • 提供者:qq_33413128
  1. scikit-learn-0.21.3-中文文档.pdf

  2. scikit-learn 是基于 Python 语言的机器学习工具 简单高效的数据挖掘和数据分析工具 可供大家在各种环境中重复使用 建立在 NumPy ,SciPy 和 matplotlib 上 开源,可商业使用 - BSD许可证1.监督学习 1广义线性模型 °1.1.1普通最小二乘法 1.1.2岭回归 1.1.3LaSs0 o1.1.4多任务 Lasso 115弹性网络 o116多任务弹性网络 1.1.7最小角回归 1.1. 8 LARS Lasso 1.19正交匹配追踪法(OMP 1.1.1
  3. 所属分类:机器学习

    • 发布日期:2019-08-24
    • 文件大小:40mb
    • 提供者:h394266861
  1. python实现决策树C4.5算法详解(在ID3基础上改进)

  2. 下面小编就为大家带来一篇python实现决策树C4.5算法详解(在ID3基础上改进)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
  3. 所属分类:其它

    • 发布日期:2020-09-21
    • 文件大小:129kb
    • 提供者:weixin_38593823
  1. Python实现决策树C4.5算法的示例

  2. 本篇文章主要介绍了Python实现决策树C4.5算法的示例,详解的介绍了决策树C4.5算法的原理和实现代码,非常具有实用价值,需要的朋友可以参考下
  3. 所属分类:其它

    • 发布日期:2020-09-20
    • 文件大小:225kb
    • 提供者:weixin_38557935
  1. python实现C4.5决策树算法

  2. 主要为大家详细介绍了python实现C4.5决策树算法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
  3. 所属分类:其它

    • 发布日期:2020-09-20
    • 文件大小:85kb
    • 提供者:weixin_38726255
  1. python实现决策树C4.5算法详解(在ID3基础上改进)

  2. 一、概论 C4.5主要是在ID3的基础上改进,ID3选择(属性)树节点是选择信息增益值最大的属性作为节点。而C4.5引入了新概念“信息增益率”,C4.5是选择信息增益率最大的属性作为树节点。 二、信息增益 以上公式是求信息增益率(ID3的知识点) 三、信息增益率 信息增益率是在求出信息增益值在除以。 例如下面公式为求属性为“outlook”的值: 四、C4.5的完整代码 from numpy import * from scipy import * from math import lo
  3. 所属分类:其它

    • 发布日期:2020-12-24
    • 文件大小:131kb
    • 提供者:weixin_38509504
  1. python实现连续变量最优分箱详解–CART算法

  2. 关于变量分箱主要分为两大类:有监督型和无监督型 对应的分箱方法: A. 无监督:(1) 等宽 (2) 等频 (3) 聚类 B. 有监督:(1) 卡方分箱法(ChiMerge) (2) ID3、C4.5、CART等单变量决策树算法 (3) 信用评分建模的IV最大化分箱 等 本篇使用python,基于CART算法对连续变量进行最优分箱 由于CART是决策树分类算法,所以相当于是单变量决策树分类。 简单介绍下理论: CART是二叉树,每次仅进行二元分类,对于连续性变量,方法是依次计算相邻两元素值的中位
  3. 所属分类:其它

    • 发布日期:2021-01-02
    • 文件大小:58kb
    • 提供者:weixin_38749305
  1. Python实现决策树C4.5算法的示例

  2. 为什么要改进成C4.5算法 原理 C4.5算法是在ID3算法上的一种改进,它与ID3算法最大的区别就是特征选择上有所不同,一个是基于信息增益比,一个是基于信息增益。 之所以这样做是因为信息增益倾向于选择取值比较多的特征(特征越多,条件熵(特征划分后的类别变量的熵)越小,信息增益就越大);因此在信息增益下面加一个分母,该分母是当前所选特征的熵,注意:这里而不是类别变量的熵了。 这样就构成了新的特征选择准则,叫做信息增益比。为什么加了这样一个分母就会消除ID3算法倾向于选择取值较多的特征呢? 因为
  3. 所属分类:其它

    • 发布日期:2021-01-21
    • 文件大小:225kb
    • 提供者:weixin_38647517
  1. python实现C4.5决策树算法

  2. C4.5算法使用信息增益率来代替ID3的信息增益进行特征的选择,克服了信息增益选择特征时偏向于特征值个数较多的不足。信息增益率的定义如下: # -*- coding: utf-8 -*- from numpy import * import math import copy import cPickle as pickle class C45DTree(object): def __init__(self): # 构造方法 self.tree = {} # 生成树 self.d
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:85kb
    • 提供者:weixin_38706782