您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于python实现的sift算法

  2. 尺度不变特征转换(Scale-invariant feature transform或SIFT)是一种电脑视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量,此算法由 David Lowe在1999年所发表,2004年完善总结。其应用范围包含物体辨识、机器人地图感知与导航、影像缝合、3D模型建立、手势辨识、影像追踪和动作比对。
  3. 所属分类:图像处理

    • 发布日期:2019-04-05
    • 文件大小:52kb
    • 提供者:ximerr
  1. PSO算法.py

  2. 本代码通过具体的算例给出PSO算法的详细过程,通过优化算法寻找一个双参数方程的极值。Python代码。
  3. 所属分类:专业指导

    • 发布日期:2019-06-21
    • 文件大小:7kb
    • 提供者:qq_39380574
  1. 遗传算法优化双参数函数极值问题

  2. 本文档提供的代码是用Python写的,功能为通过遗传算法寻找双参数函数的极值,是一种优化算法。
  3. 所属分类:专业指导

    • 发布日期:2019-06-21
    • 文件大小:6kb
    • 提供者:qq_39380574
  1. opencv的全部基础操作,很实用,我从github上下载的,例子都调试过。anaconda3,python3.7,opencv4调试通过。

  2. code_001 | [图片读取与显示](python/code_001/opencv_001.py) | ✔️ code_002 | [图片灰度化](python/code_002/opencv_002.py) | ✔️ code_003 | [图像创建与赋值](python/code_003/opencv_003.py) | ✔️ code_004 | [图像像素读写](python/code_004/opencv_004.py) | ✔️ code_005 | [图像像素算术操作(加减乘
  3. 所属分类:图像处理

    • 发布日期:2019-08-23
    • 文件大小:36mb
    • 提供者:neu1835
  1. python 寻找离散序列极值点的方法

  2. 今天小编就为大家分享一篇python 寻找离散序列极值点的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
  3. 所属分类:其它

    • 发布日期:2020-09-19
    • 文件大小:30kb
    • 提供者:weixin_38651445
  1. PSO粒子群算法求最大最小值 -——python

  2. 通过PSO粒子群算法求最大最小值,可直接运行。粒子群算法通过设计一种无质量的粒子来模拟鸟群中的鸟,粒子仅具有两个属性:速度和位置,速度代表移动的快慢,位置代表移动的方向。每个粒子在搜索空间中单独的搜寻最优解,并将其记为当前个体极值,并将个体极值与整个粒子群里的其他粒子共享,找到最优的那个个体极值作为整个粒子群的当前全局最优解,粒子群中的所有粒子根据自己找到的当前个体极值和整个粒子群共享的当前全局最优解来调整自己的速度和位置。粒子群算法的思想相对比较简单,主要分为:1、初始化粒子群;2、评价粒子,
  3. 所属分类:机器学习

  1. Python实现多元线性回归方程梯度下降法与求函数极值

  2. 梯度下降法 梯度下降法的基本思想可以类比为一个下山的过程。 假设这样一个场景:一个人被困在山上,需要从山上下来(找到山的最低点,也就是山谷)。但此时山上的浓雾很大,导致可视度很低;因此,下山的路径就无法确定,必须利用自己周围的信息一步一步地找到下山的路。这个时候,便可利用梯度下降算法来帮助自己下山。怎么做呢,首先以他当前的所处的位置为基准,寻找这个位置最陡峭的地方,然后朝着下降方向走一步,然后又继续以当前位置为基准,再找最陡峭的地方,再走直到最后到达最低处;同理上山也是如此,只是这时候就变成梯度
  3. 所属分类:其它

    • 发布日期:2020-12-21
    • 文件大小:103kb
    • 提供者:weixin_38660108
  1. 拉格朗日法线性规划求解

  2. 拉格朗日法线性规划求解 目录拉格朗日法线性规划求解1、拉格朗日乘子法2、拉格朗日乘子法例题求解直接计算python中scipy包实现 1、拉格朗日乘子法 拉格朗日乘数法(以数学家约瑟夫·路易斯·拉格朗日命名)是一种寻找变量受一个或多个条件所限制的多元函数的极值的方法。这种方法将一个有n 个变量与k 个约束条件的最优化问题转换为一个有n + k个变量的方程组的极值问题,其变量不受任何约束。这种方法引入了一种新的标量未知数,即拉格朗日乘数:约束方程的梯度(gradient)的线性组合里每个向量的系数
  3. 所属分类:其它

    • 发布日期:2020-12-21
    • 文件大小:87kb
    • 提供者:weixin_38543280
  1. 最优化算法python实现篇(1)——进退法

  2. 最优化算法python实现篇(1)——进退法算法简介算法适用问题python实现示例运行结果 算法简介 进退法的用途是为一维极值优化问题寻找到一个包含极值的单峰区间,即从一点出发,试图搜索到使函数呈现“高-低-高”的三点,从而得到一个近似的单峰区间。 算法适用问题 凸优化问题,即目标函数为凸函数,若不是凸函数,则搜索到的单峰区间依赖初始值的选择,一般只能找到包含极值的单峰区间,而找不到包含最值的区间,即只能搜索到局部最优,而非全局最优。 python实现 import matplotlib.py
  3. 所属分类:其它

    • 发布日期:2020-12-21
    • 文件大小:55kb
    • 提供者:weixin_38555019
  1. 最优化算法python实现篇(1)——进退法

  2. 最优化算法python实现篇(1)——进退法算法简介算法适用问题python实现示例运行结果 算法简介 进退法的用途是为一维极值优化问题寻找到一个包含极值的单峰区间,即从一点出发,试图搜索到使函数呈现“高-低-高”的三点,从而得到一个近似的单峰区间。 算法适用问题 凸优化问题,即目标函数为凸函数,若不是凸函数,则搜索到的单峰区间依赖初始值的选择,一般只能找到包含极值的单峰区间,而找不到包含最值的区间,即只能搜索到局部最优,而非全局最优。 python实现 import matplotlib.py
  3. 所属分类:其它

    • 发布日期:2020-12-21
    • 文件大小:55kb
    • 提供者:weixin_38514523
  1. python实现图像全景拼接

  2. 图像的全景拼接包括三大部分:特征点提取与匹配、图像配准、图像融合。 1、基于SIFT的特征点的提取与匹配 利用Sift提取图像的局部特征,在尺度空间寻找极值点,并提取出其位置、尺度、方向信息。 具体步骤: 1). 生成高斯差分金字塔(DOG金字塔),尺度空间构建 2). 空间极值点检测(关键点的初步查探) 3). 稳定关键点的精确定位 4). 稳定关键点方向信息分配 5). 关键点描述 6). 特征点匹配 2、图像配准 图像配准是一种确定待拼接图像间的重叠区域以及重叠位置的技术,它是整个图像拼接
  3. 所属分类:其它

    • 发布日期:2020-12-20
    • 文件大小:710kb
    • 提供者:weixin_38576045
  1. python 寻找离散序列极值点的方法

  2. 使用 scipy.signal 的 argrelextrema 函数(API),简单方便 import numpy as np import pylab as pl import matplotlib.pyplot as plt import scipy.signal as signal x=np.array([ 0, 6, 25, 20, 15, 8, 15, 6, 0, 6, 0, -5, -15, -3, 4, 10, 8, 13, 8, 10, 3, 1, 20, 7, 3,
  3. 所属分类:其它

    • 发布日期:2020-12-31
    • 文件大小:32kb
    • 提供者:weixin_38598703
  1. python 梯度法求解函数极值的实例

  2. 如下所示: #coding utf-8 a=0.001 #定义收敛步长 xd=1 #定义寻找步长 x=0 #定义一个种子x0 i=0 #循环迭代次数 y=0 dic={} import math def f(x): y=math.sin(x) #定义函数f(X)=sinx return y def fd(x): y=math.cos(x) #函数f(x)导数fd(X)=cosx return y while y>=0 and y0.001: #定义精度
  3. 所属分类:其它

    • 发布日期:2020-12-31
    • 文件大小:30kb
    • 提供者:weixin_38660051
  1. python 非线性规划方式(scipy.optimize.minimize)

  2. 一、背景: 现在项目上有一个用python 实现非线性规划的需求。非线性规划可以简单分两种,目标函数为凸函数 or 非凸函数。 凸函数的 非线性规划,比如fun=x^2+y^2+x*y,有很多常用的python库来完成,网上也有很多资料,比如CVXPY 非凸函数的 非线性规划(求极值),从处理方法来说,可以尝试以下几种: 1.纯数学方法,求导求极值; 2.使用神经网络,深度学习来处理,可参考反向传播算法中链式求导的过程; 3.寻找一些python库来做,本文介绍scipy.optimize.mi
  3. 所属分类:其它

    • 发布日期:2021-01-21
    • 文件大小:58kb
    • 提供者:weixin_38703895
  1. python实现粒子群算法

  2. 粒子群算法 粒子群算法源于复杂适应系统(Complex Adaptive System,CAS)。CAS理论于1994年正式提出,CAS中的成员称为主体。比如研究鸟群系统,每个鸟在这个系统中就称为主体。主体有适应性,它能够与环境及其他的主体进行交流,并且根据交流的过程“学习”或“积累经验”改变自身结构与行为。整个系统的演变或进化包括:新层次的产生(小鸟的出生);分化和多样性的出现(鸟群中的鸟分成许多小的群);新的主题的出现(鸟寻找食物过程中,不断发现新的食物)。 PSO初始化为一群随机粒子(
  3. 所属分类:其它

    • 发布日期:2021-01-19
    • 文件大小:238kb
    • 提供者:weixin_38741531