您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 多项式拟合正弦函数

  2. 实验要求: 1. 生成数据,加入噪声; 2. 用高阶多项式函数拟合曲线; 3. 用解析解求解两种loss的最优解(无正则项和有正则项) 4. 优化方法求解最优解(梯度下降,共轭梯度); 5. 用你得到的实验数据,解释过拟合。 6. 用不同数据量,不同超参数,不同的多项式阶数,比较实验效果。 7. 语言不限,可以用matlab,python。求解解析解时可以利用现成的矩阵求逆。梯度下降,共轭梯度要求自己求梯度,迭代优化自己写。不许用现成的平台,例如pytorch,tensorflow的自动微分工
  3. 所属分类:机器学习

    • 发布日期:2018-10-14
    • 文件大小:6kb
    • 提供者:qinglingls
  1. sklearn0.19中文文档

  2. sklearn0.19中文文档 PDF格式高清。 .1. 广义线性模型 1.1.1. 普通最小二乘法 1.1.1.1. 普通最小二乘法复杂度 1.1.2. 岭回归 1.1.2.1. 岭回归的复杂度 1.1.2.2. 设置正则化参数:广义交叉验证 1.1.3. Lasso 1.1.3.1. 设置正则化参数 1.1.3.1.1. 使用交叉验证 1.1.3.1.2. 基于信息标准的模型选择 1.1.3.1.3. 与 SVM 的正则化参数的比较 1.1.4. 多任务 Lasso 1.1.5. 弹性网络
  3. 所属分类:机器学习

    • 发布日期:2018-10-30
    • 文件大小:14mb
    • 提供者:hardpen2013
  1. Python正弦拟合

  2. 自己用Python写的正弦拟合程序,下载就可以使用,采用最小二乘拟合,方便快捷,就是你想要的那种。拟合毕竟是拟合,会与实际值有所偏差,但是非常实用。只需要输入x,y序列和角频率就可以了。
  3. 所属分类:Python

    • 发布日期:2020-02-25
    • 文件大小:877byte
    • 提供者:qq_39312643