点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - pytorch二值化
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
PyTorch 模型训练实⽤教程_余霆嵩(去水印)
本教程内容及结构: 本教程内容主要为在 PyTorch 中训练一个模型所可能涉及到的方法及函 数,并且对 PyTorch 提供的数据增强方法(22 个)、权值初始化方法(10 个)、损失函数(17 个)、优化器(6 个)及 tensorboardX 的方法(13 个) 进行了详细介绍。 本教程分为四章,结构与机器学习三大部分一致。 第一章,介绍数据的划分,预处理,数据增强; 第二章,介绍模型的定义,权值初始化,模型 Finetune; 第三章,介绍各种损失函数及优化器; 第四章,介绍可视化工具
所属分类:
深度学习
发布日期:2018-12-20
文件大小:10mb
提供者:
dakeboy
PyTorch 模型训练实用教程
本教程内容主要为在 PyTorch 中训练一个模型所可能涉及到的方法及函 数, 并且对 PyTorch 提供的数据增强方法(22 个)、权值初始化方法(10 个)、损失函数(17 个)、优化器(6 个)及 tensorboardX 的方法(13 个) 进行了详细介绍,本教程分为四章, 结构与机器学习三大部分一致。 第一章, 介绍数据的划分,预处理,数据增强; 第二章, 介绍模型的定义,权值初始化,模型 Finetune; 第三章, 介绍各种损失函数及优化器; 第四章, 介绍可视化工具,用于监控数
所属分类:
机器学习
发布日期:2019-03-03
文件大小:4mb
提供者:
qq_29893385
pytorch自定义二值化网络层方式
今天小编就为大家分享一篇pytorch自定义二值化网络层方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
所属分类:
其它
发布日期:2020-09-18
文件大小:30kb
提供者:
weixin_38502915
pytorch自定义二值化网络层方式
任务要求: 自定义一个层主要是定义该层的实现函数,只需要重载Function的forward和backward函数即可,如下: import torch from torch.autograd import Function from torch.autograd import Variable 定义二值化函数 class BinarizedF(Function): def forward(self, input): self.save_for_backward(input)
所属分类:
其它
发布日期:2020-12-23
文件大小:32kb
提供者:
weixin_38516380
pytorch动手深度学习的笔记[二]
一.循环神经网络 循环神经网络基于当前的输入与过去的输入序列,预测序列的下一个字符。它引入一个隐藏变量H,用Ht表示H在时间步t的值。Ht的计算基于Xt和Ht−1,可以认为Ht记录了到当前字符为止的序列信息,利用Ht对序列的下一个字符进行预测。 1.隐状态的引入 2.one-hot向量 3.初始化模型参数:隐藏层参数,输出层参数。 4.定义模型后裁剪梯度,定义预测函数,定义模型训练函数,使用困惑度评价模型。 二.循环神经网络进阶 GRU ⻔控循环神经⽹络:捕捉时间序列中时间步距离较⼤的依赖关系。
所属分类:
其它
发布日期:2021-01-07
文件大小:82kb
提供者:
weixin_38735570
PopGen:用于PyTorch的生成建模工具包-源码
流行音乐 PopGen是用PyTorch编写的生成建模工具包。 它旨在提供高质量的参考实现和可重用的组件,重点在于基于可能性的模型和表示学习。 实验范例 包含的VAE示例说明了灵活的后验分布和先验分布可以在高斯基线上得到改善。 vae和vamp架构遵循描述的L = 1 VAE的设置。 vae_vamp_hsnf模型还将K = 4 引入后验分布。 每个模型在动态二值化MNIST上训练了1M步。 使用界和5000个样本来估计边际可能性。 姓名 后部 事先的 对数p(x) vae 对角高斯 标
所属分类:
其它
发布日期:2021-03-09
文件大小:42kb
提供者:
weixin_42131728
project-item-count:有关使用Machin学习对图像中的项目进行计数的项目-源码
项目计数算法 这是有关通过算法对图像中的项目数进行计数的项目。 这是一个正在开发的项目,将不断更新。 产品特点 基于OpenCV算法 基于软件包提供的方法的项目检测包括图像灰度,图像二值化,边缘检测器和绘图边缘。 基于卷积神经网络的算法 基于OpenCV方法的物品检测会遇到物品聚集在一起时精度较差的问题。 为了改善这一点,我们更喜欢使用一些基于机器学习的方法,最基本的模型是CNN。 要求 Python Version : 3.8 or later Python Packages : PyTo
所属分类:
其它
发布日期:2021-02-10
文件大小:942kb
提供者:
weixin_42129797
变分自动编码器:以张量流和pytorch(包括逆自回归流)实现的变分自动编码器-源码
张量流和pytorch中的变体自动编码器 TensorFlow和PyTorch中可变自动编码器的参考实现。 我建议使用PyTorch版本。 它包括一个更具表达性的变分族的例子,。 变分推断用于使模型适合二值化MNIST手写数字图像。 推理网络(编码器)用于分摊推理并在数据点之间共享参数。 可能性通过生成网络(解码器)进行参数化。 博客文章: : 具有重要性采样的示例输出,用于估计Hugo Larochelle的Binary MNIST数据集上的边际可能性。 测试集为-97.10边缘
所属分类:
其它
发布日期:2021-02-04
文件大小:12kb
提供者:
weixin_42136826