您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. DataWhale组队学习打卡(二)

  2. 前言 记《手动学深度学习》组队学习第二次打卡 打卡内容 线性回归代码实现(基于Pytorch) 理论复习 线性回归理论部分可参考上一篇博客 线性回归模型从零开始的实现 借助jupyter运行代码,方便清晰展示各环节的输出情况。 1. 导入基础模块 In [ ]: # import packages and modules %matplotlib inline import torch from IPython import display from matplotlib import pyplo
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:74kb
    • 提供者:weixin_38682406
  1. pytorch组队学习

  2. 卷积神经网络基础 本节介绍循环神经网络,下图展示了如何基于循环神经网络实现语言模型。我们的目的是基于当前的输入与过去的输入序列,预测序列的下一个字符。循环神经网络引入一个隐藏变量H,用Ht表示H在时间步t的值。Ht的计算基于Xt和Ht−1,可以认为Ht记录了到当前字符为止的序列信息,利用Ht对序列的下一个字符进行预测。 循环神经网络的构造 我们先看循环神经网络的具体构造。假设 Xt∈Rn×d 是时间步 t 的小批量输入, Ht∈Rn×h 是该时间步的隐藏变量,则: Ht=ϕ(XtWxh+Ht−1
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:41kb
    • 提供者:weixin_38725426